Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
295ae6fc
Commit
295ae6fc
authored
Mar 31, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added an optional non-negativity constraint on w to the oca optimizer.
parent
82e1df7a
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
38 additions
and
33 deletions
+38
-33
optimization_oca.h
dlib/optimization/optimization_oca.h
+30
-31
optimization_oca_abstract.h
dlib/optimization/optimization_oca_abstract.h
+8
-2
No files found.
dlib/optimization/optimization_oca.h
View file @
295ae6fc
...
...
@@ -7,7 +7,7 @@
#include "../matrix.h"
#include "optimization_solve_qp_using_smo.h"
#include <
list
>
#include <
vector
>
// ----------------------------------------------------------------------------------------
...
...
@@ -110,7 +110,8 @@ namespace dlib
>
typename
matrix_type
::
type
operator
()
(
const
oca_problem
<
matrix_type
>&
problem
,
matrix_type
&
w
matrix_type
&
w
,
bool
require_nonnegative_w
=
false
)
const
{
// make sure requires clause is not broken
...
...
@@ -130,10 +131,10 @@ namespace dlib
const
scalar_type
C
=
problem
.
get_c
();
std
::
list
<
vec
t_type
>
planes
;
matrix
<
scalar_type
,
0
,
0
,
mem_manager_type
,
layou
t_type
>
planes
;
std
::
vector
<
scalar_type
>
bs
,
miss_count
;
vect_type
temp
,
alpha
;
vect_type
new_plane
,
alpha
;
w
.
set_size
(
problem
.
get_num_dimensions
(),
1
);
w
=
0
;
...
...
@@ -154,7 +155,7 @@ namespace dlib
// The flat lower bounding plane is always good to have if we know
// what it is.
bs
.
push_back
(
R_lower_bound
);
planes
.
push_back
(
zeros_matrix
<
scalar_type
>
(
w
.
size
(),
1
)
);
planes
=
zeros_matrix
(
w
);
alpha
=
uniform_matrix
<
scalar_type
>
(
1
,
1
,
C
);
miss_count
.
push_back
(
0
);
...
...
@@ -169,9 +170,12 @@ namespace dlib
// add the next cutting plane
scalar_type
cur_risk
;
planes
.
resize
(
planes
.
size
()
+
1
);
problem
.
get_risk
(
w
,
cur_risk
,
planes
.
back
());
bs
.
push_back
(
cur_risk
-
dot
(
w
,
planes
.
back
()));
problem
.
get_risk
(
w
,
cur_risk
,
new_plane
);
if
(
planes
.
size
()
!=
0
)
planes
=
join_rows
(
planes
,
new_plane
);
else
planes
=
new_plane
;
bs
.
push_back
(
cur_risk
-
dot
(
w
,
new_plane
));
miss_count
.
push_back
(
0
);
// If alpha is empty then initialize it (we must always have sum(alpha) == C).
...
...
@@ -187,24 +191,22 @@ namespace dlib
// report current status
const
scalar_type
risk_gap
=
cur_risk
-
(
cp_obj
-
wnorm
)
/
C
;
if
(
counter
>
0
&&
problem
.
optimization_status
(
cur_obj
,
cur_obj
-
cp_obj
,
cur_risk
,
risk_gap
,
planes
.
size
(),
counter
))
cur_risk
,
risk_gap
,
planes
.
nc
(),
counter
))
{
break
;
}
// compute kernel matrix for all the planes
K
.
swap
(
Ktmp
);
K
.
set_size
(
planes
.
size
(),
planes
.
size
());
K
.
set_size
(
planes
.
nc
(),
planes
.
nc
());
// copy over the old K matrix
set_subm
(
K
,
0
,
0
,
Ktmp
.
nr
(),
Ktmp
.
nc
())
=
Ktmp
;
// now add the new row and column to K
long
rr
=
0
;
for
(
typename
std
::
list
<
vect_type
>::
iterator
r
=
planes
.
begin
();
r
!=
planes
.
end
();
++
r
)
for
(
long
c
=
0
;
c
<
planes
.
nc
();
++
c
)
{
K
(
rr
,
Ktmp
.
nc
())
=
dot
(
*
r
,
planes
.
back
());
K
(
Ktmp
.
nc
(),
rr
)
=
K
(
rr
,
Ktmp
.
nc
());
++
rr
;
K
(
c
,
Ktmp
.
nc
())
=
dot
(
colm
(
planes
,
c
),
new_plane
);
K
(
Ktmp
.
nc
(),
c
)
=
K
(
c
,
Ktmp
.
nc
());
}
...
...
@@ -216,23 +218,22 @@ namespace dlib
eps
=
1e-16
;
// Note that we warm start this optimization by using the alpha from the last
// iteration as the starting point.
solve_qp_using_smo
(
K
,
vector_to_matrix
(
bs
),
alpha
,
eps
,
sub_max_iter
);
if
(
require_nonnegative_w
)
solve_qp4_using_smo
(
planes
,
K
,
vector_to_matrix
(
bs
),
alpha
,
eps
,
sub_max_iter
);
else
solve_qp_using_smo
(
K
,
vector_to_matrix
(
bs
),
alpha
,
eps
,
sub_max_iter
);
// construct the w that minimized the subproblem.
w
=
0
;
rr
=
0
;
for
(
typename
std
::
list
<
vect_type
>::
iterator
i
=
planes
.
begin
();
i
!=
planes
.
end
();
++
i
)
w
=
-
(
planes
*
alpha
);
if
(
require_nonnegative_w
)
w
=
lowerbound
(
w
,
0
);
for
(
long
i
=
0
;
i
<
alpha
.
size
();
++
i
)
{
if
(
alpha
(
rr
)
!=
0
)
{
w
-=
alpha
(
rr
)
*
(
*
i
);
miss_count
[
rr
]
=
0
;
}
if
(
alpha
(
i
)
!=
0
)
miss_count
[
i
]
=
0
;
else
{
miss_count
[
rr
]
+=
1
;
}
++
rr
;
miss_count
[
i
]
+=
1
;
}
// Compute the lower bound on the true objective given to us by the cutting
...
...
@@ -245,13 +246,11 @@ namespace dlib
while
(
max
(
vector_to_matrix
(
miss_count
))
>=
inactive_thresh
)
{
const
long
idx
=
index_of_max
(
vector_to_matrix
(
miss_count
));
typename
std
::
list
<
vect_type
>::
iterator
i0
=
planes
.
begin
();
advance
(
i0
,
idx
);
planes
.
erase
(
i0
);
bs
.
erase
(
bs
.
begin
()
+
idx
);
miss_count
.
erase
(
miss_count
.
begin
()
+
idx
);
K
=
removerc
(
K
,
idx
,
idx
);
alpha
=
remove_row
(
alpha
,
idx
);
planes
=
remove_col
(
planes
,
idx
);
}
++
counter
;
...
...
dlib/optimization/optimization_oca_abstract.h
View file @
295ae6fc
...
...
@@ -124,7 +124,8 @@ namespace dlib
For reference, OCA solves optimization problems with the following form:
Minimize: f(w) == 0.5*dot(w,w) + C*R(w)
Where R(w) is a user-supplied convex function and C > 0
Where R(w) is a user-supplied convex function and C > 0. Optionally,
this object can also add the non-negativity constraint that min(w) >= 0.
For a detailed discussion you should consult the following papers
...
...
@@ -149,7 +150,8 @@ namespace dlib
>
typename
matrix_type
::
type
operator
()
(
const
oca_problem
<
matrix_type
>&
problem
,
matrix_type
&
w
matrix_type
&
w
,
bool
require_nonnegative_w
=
false
)
const
;
/*!
requires
...
...
@@ -160,6 +162,10 @@ namespace dlib
- The optimization algorithm runs until problem.optimization_status()
indicates it is time to stop.
- returns the objective value at the solution #w
- if (require_nonnegative_w == true) then
- Adds the constraint that every element of w be non-negative.
Therefore, if this argument is true then #w won't contain any
negative values.
!*/
void
set_subproblem_epsilon
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment