Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
29964d28
Commit
29964d28
authored
Nov 03, 2011
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
improved example a little
parent
02b63287
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
142 additions
and
69 deletions
+142
-69
sequence_labeler_ex.cpp
examples/sequence_labeler_ex.cpp
+142
-69
No files found.
examples/sequence_labeler_ex.cpp
View file @
29964d28
...
...
@@ -67,8 +67,127 @@ public:
}
};
void
serialize
(
const
feature_extractor
&
,
std
::
ostream
&
)
{}
void
deserialize
(
feature_extractor
&
,
std
::
istream
&
)
{}
// ----------------------------------------------------------------------------------------
void
make_dataset
(
const
matrix
<
double
>&
emission_probabilities
,
const
matrix
<
double
>&
transition_probabilities
,
std
::
vector
<
std
::
vector
<
unsigned
long
>
>&
samples
,
std
::
vector
<
std
::
vector
<
unsigned
long
>
>&
labels
,
unsigned
long
dataset_size
);
/*!
requires
- transition_probabilities.nr() == transition_probabilities.nc()
- transition_probabilities.nr() == emission_probabilities.nr()
- The rows of transition_probabilities and emission_probabilities must sum to 1.
(i.e. sum_cols(transition_probabilities) and sum_cols(emission_probabilities)
must evaluate to vectors of all 1s.)
ensures
- This function randomly samples a bunch of sequences from the HMM defined by
transition_probabilities and emission_probabilities.
- The HMM is defined by:
- P(next_label |previous_label) == transition_probabilities(previous_label, next_label)
- P(next_sample|next_label) == emission_probabilities (next_label, next_sample)
- #samples.size() == labels.size() == dataset_size
- for all valid i:
- #labels[i] is a randomly sampled sequence of hidden states from the
given HMM. #samples[i] is its corresponding randomly sampled sequence
of observed states.
!*/
// ----------------------------------------------------------------------------------------
int
main
()
{
// set this up so emission_probabilities(L,X) == The probability of a state with label L
// emitting an X.
matrix
<
double
>
emission_probabilities
(
num_label_states
,
num_sample_states
);
emission_probabilities
=
0.5
,
0.5
,
0.0
,
0.0
,
0.5
,
0.5
,
0.5
,
0.0
,
0.5
;
matrix
<
double
>
transition_probabilities
(
num_label_states
,
num_label_states
);
transition_probabilities
=
0.05
,
0.90
,
0.05
,
0.05
,
0.05
,
0.90
,
0.90
,
0.05
,
0.05
;
std
::
vector
<
std
::
vector
<
unsigned
long
>
>
samples
;
std
::
vector
<
std
::
vector
<
unsigned
long
>
>
labels
;
make_dataset
(
emission_probabilities
,
transition_probabilities
,
samples
,
labels
,
1000
);
cout
<<
"samples.size(): "
<<
samples
.
size
()
<<
endl
;
// print out some of the randomly sampled sequences
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
cout
<<
"hidden states: "
<<
trans
(
vector_to_matrix
(
labels
[
i
]));
cout
<<
"observed states: "
<<
trans
(
vector_to_matrix
(
samples
[
i
]));
cout
<<
"******************************"
<<
endl
;
}
structural_sequence_labeling_trainer
<
feature_extractor
>
trainer
;
trainer
.
set_c
(
4
);
trainer
.
set_num_threads
(
4
);
matrix
<
double
>
confusion_matrix
;
// Learn to do sequence labeling from the dataset
sequence_labeler
<
feature_extractor
>
labeler
=
trainer
.
train
(
samples
,
labels
);
confusion_matrix
=
test_sequence_labeler
(
labeler
,
samples
,
labels
);
cout
<<
"trained sequence labeler: "
<<
endl
;
cout
<<
confusion_matrix
;
cout
<<
"label accuracy: "
<<
sum
(
diag
(
confusion_matrix
))
/
sum
(
confusion_matrix
)
<<
endl
;
// We can also do cross-validation
confusion_matrix
=
cross_validate_sequence_labeler
(
trainer
,
samples
,
labels
,
4
);
cout
<<
"
\n
cross-validation: "
<<
endl
;
cout
<<
confusion_matrix
;
cout
<<
"label accuracy: "
<<
sum
(
diag
(
confusion_matrix
))
/
sum
(
confusion_matrix
)
<<
endl
;
matrix
<
double
,
0
,
1
>
true_hmm_model_weights
=
log
(
join_cols
(
reshape_to_column_vector
(
transition_probabilities
),
reshape_to_column_vector
(
emission_probabilities
)));
sequence_labeler
<
feature_extractor
>
labeler_true
(
feature_extractor
(),
true_hmm_model_weights
);
confusion_matrix
=
test_sequence_labeler
(
labeler_true
,
samples
,
labels
);
cout
<<
"
\n
True HMM model: "
<<
endl
;
cout
<<
confusion_matrix
;
cout
<<
"label accuracy: "
<<
sum
(
diag
(
confusion_matrix
))
/
sum
(
confusion_matrix
)
<<
endl
;
// Finally, the labeler can be serialized to disk just like most dlib objects.
ofstream
fout
(
"labeler.dat"
,
ios
::
binary
);
serialize
(
labeler
,
fout
);
fout
.
close
();
// recall from disk
ifstream
fin
(
"labeler.dat"
,
ios
::
binary
);
deserialize
(
labeler
,
fin
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// Code for creating a bunch of random samples from our HMM.
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
void
sample_hmm
(
dlib
::
rand
&
rnd
,
...
...
@@ -78,7 +197,26 @@ void sample_hmm (
unsigned
long
&
next_label
,
unsigned
long
&
next_sample
)
/*!
requires
- previous_label < transition_probabilities.nr()
- transition_probabilities.nr() == transition_probabilities.nc()
- transition_probabilities.nr() == emission_probabilities.nr()
- The rows of transition_probabilities and emission_probabilities must sum to 1.
(i.e. sum_cols(transition_probabilities) and sum_cols(emission_probabilities)
must evaluate to vectors of all 1s.)
ensures
- This function randomly samples the HMM defined by transition_probabilities
and emission_probabilities assuming that the previous hidden state
was previous_label.
- The HMM is defined by:
- P(next_label |previous_label) == transition_probabilities(previous_label, next_label)
- P(next_sample|next_label) == emission_probabilities (next_label, next_sample)
- #next_label == the sampled value of the hidden state
- #next_sample == the sampled value of the observed state
!*/
{
// sample next_label
double
p
=
rnd
.
get_random_double
();
for
(
long
c
=
0
;
p
>=
0
&&
c
<
transition_probabilities
.
nc
();
++
c
)
{
...
...
@@ -86,7 +224,7 @@ void sample_hmm (
p
-=
transition_probabilities
(
previous_label
,
c
);
}
// now sample next_sample
p
=
rnd
.
get_random_double
();
for
(
long
c
=
0
;
p
>=
0
&&
c
<
emission_probabilities
.
nc
();
++
c
)
{
...
...
@@ -104,10 +242,6 @@ void make_dataset (
std
::
vector
<
std
::
vector
<
unsigned
long
>
>&
labels
,
unsigned
long
dataset_size
)
/*!
2 kinds of label
3 kinds of input state
!*/
{
samples
.
clear
();
labels
.
clear
();
...
...
@@ -117,9 +251,9 @@ void make_dataset (
// now randomly sample some labeled sequences from our Hidden Markov Model
for
(
unsigned
long
iter
=
0
;
iter
<
dataset_size
;
++
iter
)
{
const
unsigned
long
size
=
rnd
.
get_random_32bit_number
()
%
20
+
3
;
std
::
vector
<
unsigned
long
>
sample
(
size
);
std
::
vector
<
unsigned
long
>
label
(
size
);
const
unsigned
long
s
equence_s
ize
=
rnd
.
get_random_32bit_number
()
%
20
+
3
;
std
::
vector
<
unsigned
long
>
sample
(
s
equence_s
ize
);
std
::
vector
<
unsigned
long
>
label
(
s
equence_s
ize
);
unsigned
long
previous_label
=
rnd
.
get_random_32bit_number
()
%
num_label_states
;
for
(
unsigned
long
i
=
0
;
i
<
sample
.
size
();
++
i
)
...
...
@@ -141,64 +275,3 @@ void make_dataset (
// ----------------------------------------------------------------------------------------
int
main
()
{
std
::
vector
<
std
::
vector
<
unsigned
long
>
>
samples
;
std
::
vector
<
std
::
vector
<
unsigned
long
>
>
labels
;
// set this up so emission_probabilities(L,X) == The probability of a state with label L
// emitting an X.
matrix
<
double
>
emission_probabilities
(
num_label_states
,
num_sample_states
);
emission_probabilities
=
0.5
,
0.5
,
0.0
,
0.0
,
0.5
,
0.5
,
0.5
,
0.0
,
0.5
;
matrix
<
double
>
transition_probabilities
(
num_label_states
,
num_label_states
);
transition_probabilities
=
0.05
,
0.90
,
0.05
,
0.05
,
0.05
,
0.90
,
0.90
,
0.05
,
0.05
;
make_dataset
(
emission_probabilities
,
transition_probabilities
,
samples
,
labels
,
1000
);
cout
<<
"samples.size(): "
<<
samples
.
size
()
<<
endl
;
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
cout
<<
trans
(
vector_to_matrix
(
labels
[
i
]));
cout
<<
trans
(
vector_to_matrix
(
samples
[
i
]));
cout
<<
"******************************"
<<
endl
;
}
structural_sequence_labeling_trainer
<
feature_extractor
>
trainer
;
trainer
.
set_c
(
1000
);
trainer
.
set_num_threads
(
4
);
//trainer.be_verbose();
//sequence_labeler<feature_extractor> labeler = trainer.train(samples, labels);
//cout << labeler.get_weights() << endl;
matrix
<
double
>
cm
;
cm
=
cross_validate_sequence_labeler
(
trainer
,
samples
,
labels
,
4
);
//cm = test_sequence_labeler(labeler, samples, labels);
cout
<<
cm
<<
endl
;
cout
<<
"label accuracy: "
<<
sum
(
diag
(
cm
))
/
sum
(
cm
)
<<
endl
;
matrix
<
double
,
0
,
1
>
true_hmm_model_weights
=
log
(
join_cols
(
reshape_to_column_vector
(
transition_probabilities
),
reshape_to_column_vector
(
emission_probabilities
)));
sequence_labeler
<
feature_extractor
>
labeler_true
(
feature_extractor
(),
true_hmm_model_weights
);
cout
<<
endl
;
cm
=
test_sequence_labeler
(
labeler_true
,
samples
,
labels
);
cout
<<
cm
<<
endl
;
cout
<<
"label accuracy: "
<<
sum
(
diag
(
cm
))
/
sum
(
cm
)
<<
endl
;
}
// ----------------------------------------------------------------------------------------
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment