Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
2b2fed84
Commit
2b2fed84
authored
Feb 22, 2014
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added unit tests for the new learning-to-track stuff.
parent
9b16325d
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
308 additions
and
0 deletions
+308
-0
CMakeLists.txt
dlib/test/CMakeLists.txt
+1
-0
learning_to_track.cpp
dlib/test/learning_to_track.cpp
+306
-0
makefile
dlib/test/makefile
+1
-0
No files found.
dlib/test/CMakeLists.txt
View file @
2b2fed84
...
...
@@ -64,6 +64,7 @@ set (tests
kcentroid.cpp
kernel_matrix.cpp
kmeans.cpp
learning_to_track.cpp
least_squares.cpp
linear_manifold_regularizer.cpp
lz77_buffer.cpp
...
...
dlib/test/learning_to_track.cpp
0 → 100644
View file @
2b2fed84
// Copyright (C) 2014 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <sstream>
#include "tester.h"
#include <dlib/svm_threaded.h>
#include <dlib/rand.h>
namespace
{
using
namespace
test
;
using
namespace
dlib
;
using
namespace
std
;
logger
dlog
(
"test.learning_to_track"
);
// ----------------------------------------------------------------------------------------
struct
detection_dense
{
typedef
class
track_dense
track_type
;
matrix
<
double
,
0
,
1
>
measurements
;
};
struct
track_dense
{
typedef
matrix
<
double
,
0
,
1
>
feature_vector_type
;
track_dense
()
{
time_since_last_association
=
0
;
}
void
get_similarity_features
(
const
detection_dense
det
,
feature_vector_type
&
feats
)
const
{
feats
=
abs
(
last_measurements
-
det
.
measurements
);
}
void
update_track
(
const
detection_dense
det
)
{
last_measurements
=
det
.
measurements
;
time_since_last_association
=
0
;
}
void
propagate_track
()
{
++
time_since_last_association
;
}
matrix
<
double
,
0
,
1
>
last_measurements
;
unsigned
long
time_since_last_association
;
};
// ----------------------------------------------------------------------------------------
struct
detection_sparse
{
typedef
class
track_sparse
track_type
;
matrix
<
double
,
0
,
1
>
measurements
;
};
struct
track_sparse
{
typedef
std
::
vector
<
std
::
pair
<
unsigned
long
,
double
>
>
feature_vector_type
;
track_sparse
()
{
time_since_last_association
=
0
;
}
void
get_similarity_features
(
const
detection_sparse
det
,
feature_vector_type
&
feats
)
const
{
matrix
<
double
,
0
,
1
>
temp
=
abs
(
last_measurements
-
det
.
measurements
);
feats
.
clear
();
for
(
long
i
=
0
;
i
<
temp
.
size
();
++
i
)
feats
.
push_back
(
make_pair
(
i
,
temp
(
i
)));
}
void
update_track
(
const
detection_sparse
det
)
{
last_measurements
=
det
.
measurements
;
time_since_last_association
=
0
;
}
void
propagate_track
()
{
++
time_since_last_association
;
}
matrix
<
double
,
0
,
1
>
last_measurements
;
unsigned
long
time_since_last_association
;
};
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
dlib
::
rand
rnd
;
const
long
num_objects
=
4
;
const
long
num_properties
=
6
;
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
object_properties
(
num_objects
);
void
initialize_object_properties
()
{
rnd
.
set_seed
(
"23ja2oirfjaf"
);
for
(
unsigned
long
i
=
0
;
i
<
object_properties
.
size
();
++
i
)
object_properties
[
i
]
=
randm
(
num_properties
,
1
,
rnd
);
}
template
<
typename
detection
>
detection
sample_detection_from_sensor
(
unsigned
long
object_id
)
{
DLIB_CASSERT
(
object_id
<
num_objects
,
"You can't ask to sample a detection from an object that doesn't exist."
);
detection
temp
;
// Set the measurements equal to the object's true property values plus a little bit of
// noise.
temp
.
measurements
=
object_properties
[
object_id
]
+
randm
(
num_properties
,
1
,
rnd
)
*
0.1
;
return
temp
;
}
// ----------------------------------------------------------------------------------------
template
<
typename
detection
>
std
::
vector
<
std
::
vector
<
labeled_detection
<
detection
>
>
>
make_random_tracking_data_for_training
()
{
typedef
std
::
vector
<
labeled_detection
<
detection
>
>
detections_at_single_time_step
;
typedef
std
::
vector
<
detections_at_single_time_step
>
track_history
;
track_history
data
;
// At each time step we get a set of detections from the objects in the world.
// Simulate 100 time steps worth of data where there are 3 objects present.
const
int
num_time_steps
=
100
;
for
(
int
i
=
0
;
i
<
num_time_steps
;
++
i
)
{
detections_at_single_time_step
dets
(
3
);
// sample a detection from object 0
dets
[
0
].
det
=
sample_detection_from_sensor
<
detection
>
(
0
);
dets
[
0
].
label
=
0
;
// sample a detection from object 1
dets
[
1
].
det
=
sample_detection_from_sensor
<
detection
>
(
1
);
dets
[
1
].
label
=
1
;
// sample a detection from object 2
dets
[
2
].
det
=
sample_detection_from_sensor
<
detection
>
(
2
);
dets
[
2
].
label
=
2
;
randomize_samples
(
dets
,
rnd
);
data
.
push_back
(
dets
);
}
// Now let's imagine object 1 and 2 are gone but a new object, object 3 has arrived.
for
(
int
i
=
0
;
i
<
num_time_steps
;
++
i
)
{
detections_at_single_time_step
dets
(
2
);
// sample a detection from object 0
dets
[
0
].
det
=
sample_detection_from_sensor
<
detection
>
(
0
);
dets
[
0
].
label
=
0
;
// sample a detection from object 3
dets
[
1
].
det
=
sample_detection_from_sensor
<
detection
>
(
3
);
dets
[
1
].
label
=
3
;
randomize_samples
(
dets
,
rnd
);
data
.
push_back
(
dets
);
}
return
data
;
}
// ----------------------------------------------------------------------------------------
template
<
typename
detection
>
std
::
vector
<
detection
>
make_random_detections
(
unsigned
long
num_dets
)
{
DLIB_CASSERT
(
num_dets
<=
num_objects
,
"You can't ask for more detections than there are objects in our little simulation."
);
std
::
vector
<
detection
>
dets
(
num_dets
);
for
(
unsigned
long
i
=
0
;
i
<
dets
.
size
();
++
i
)
{
dets
[
i
]
=
sample_detection_from_sensor
<
detection
>
(
i
);
}
randomize_samples
(
dets
,
rnd
);
return
dets
;
}
// ----------------------------------------------------------------------------------------
template
<
typename
detection
>
void
test_tracking_stuff
()
{
print_spinner
();
typedef
std
::
vector
<
labeled_detection
<
detection
>
>
detections_at_single_time_step
;
typedef
std
::
vector
<
detections_at_single_time_step
>
track_history
;
std
::
vector
<
track_history
>
data
;
data
.
push_back
(
make_random_tracking_data_for_training
<
detection
>
());
data
.
push_back
(
make_random_tracking_data_for_training
<
detection
>
());
data
.
push_back
(
make_random_tracking_data_for_training
<
detection
>
());
data
.
push_back
(
make_random_tracking_data_for_training
<
detection
>
());
data
.
push_back
(
make_random_tracking_data_for_training
<
detection
>
());
structural_track_association_trainer
trainer
;
trainer
.
set_c
(
1000
);
track_association_function
<
detection
>
assoc
=
trainer
.
train
(
data
);
double
test_val
=
test_track_association_function
(
assoc
,
data
);
DLIB_TEST_MSG
(
test_val
==
1
,
test_val
);
test_val
=
cross_validate_track_association_trainer
(
trainer
,
data
,
5
);
DLIB_TEST_MSG
(
test_val
==
1
,
test_val
);
typedef
typename
detection
::
track_type
track
;
std
::
vector
<
track
>
tracks
;
std
::
vector
<
detection
>
dets
=
make_random_detections
<
detection
>
(
3
);
assoc
(
tracks
,
dets
);
DLIB_TEST
(
tracks
.
size
()
==
3
);
dets
=
make_random_detections
<
detection
>
(
3
);
assoc
(
tracks
,
dets
);
DLIB_TEST
(
tracks
.
size
()
==
3
);
dets
=
make_random_detections
<
detection
>
(
3
);
assoc
(
tracks
,
dets
);
DLIB_TEST
(
tracks
.
size
()
==
3
);
dets
=
make_random_detections
<
detection
>
(
4
);
assoc
(
tracks
,
dets
);
DLIB_TEST
(
tracks
.
size
()
==
4
);
dets
=
make_random_detections
<
detection
>
(
3
);
assoc
(
tracks
,
dets
);
DLIB_TEST
(
tracks
.
size
()
==
4
);
unsigned
long
total_miss
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
tracks
.
size
();
++
i
)
total_miss
+=
tracks
[
i
].
time_since_last_association
;
DLIB_TEST
(
total_miss
==
1
);
dets
=
make_random_detections
<
detection
>
(
3
);
assoc
(
tracks
,
dets
);
DLIB_TEST
(
tracks
.
size
()
==
4
);
total_miss
=
0
;
unsigned
long
num_zero
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
tracks
.
size
();
++
i
)
{
total_miss
+=
tracks
[
i
].
time_since_last_association
;
if
(
tracks
[
i
].
time_since_last_association
==
0
)
++
num_zero
;
}
DLIB_TEST
(
total_miss
==
2
);
DLIB_TEST
(
num_zero
==
3
);
ostringstream
sout
;
serialize
(
assoc
,
sout
);
istringstream
sin
(
sout
.
str
());
deserialize
(
assoc
,
sin
);
DLIB_TEST
(
test_track_association_function
(
assoc
,
data
)
==
1
);
}
// ----------------------------------------------------------------------------------------
class
test_learning_to_track
:
public
tester
{
public
:
test_learning_to_track
(
)
:
tester
(
"test_learning_to_track"
,
"Runs tests on the assignment learning code."
)
{}
void
perform_test
(
)
{
initialize_object_properties
();
for
(
int
i
=
0
;
i
<
3
;
++
i
)
{
dlog
<<
LINFO
<<
"run test_tracking_stuff<detection_dense>()"
;
test_tracking_stuff
<
detection_dense
>
();
dlog
<<
LINFO
<<
"run test_tracking_stuff<detection_sparse>()"
;
test_tracking_stuff
<
detection_sparse
>
();
}
}
}
a
;
// ----------------------------------------------------------------------------------------
}
dlib/test/makefile
View file @
2b2fed84
...
...
@@ -79,6 +79,7 @@ SRC += is_same_object.cpp
SRC
+=
kcentroid.cpp
SRC
+=
kernel_matrix.cpp
SRC
+=
kmeans.cpp
SRC
+=
learning_to_track.cpp
SRC
+=
least_squares.cpp
SRC
+=
linear_manifold_regularizer.cpp
SRC
+=
lz77_buffer.cpp
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment