Commit 2ddc0d74 authored by Davis King's avatar Davis King

Added an implementation of the linear recursive least squares algorithm.

parent e3fc99ae
......@@ -5,6 +5,7 @@
#include "svm/svm.h"
#include "svm/krls.h"
#include "svm/rls.h"
#include "svm/kcentroid.h"
#include "svm/kcentroid_overloads.h"
#include "svm/kkmeans.h"
......
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_RLs_H__
#define DLIB_RLs_H__
#include "rls_abstract.h"
#include "../matrix.h"
#include "function.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
class rls
{
public:
explicit rls(
double forget_factor_,
double C_ = 1000
)
{
// make sure requires clause is not broken
DLIB_ASSERT(0 < forget_factor_ && forget_factor_ <= 1 &&
0 < C_,
"\t rls::rls()"
<< "\n\t invalid arguments were given to this function"
<< "\n\t forget_factor_: " << forget_factor_
<< "\n\t C_: " << C_
<< "\n\t this: " << this
);
C = C_;
forget_factor = forget_factor_;
}
rls(
)
{
C = 1000;
forget_factor = 1;
}
double get_c(
) const
{
return C;
}
double get_forget_factor(
) const
{
return forget_factor;
}
template <typename EXP>
void train (
const matrix_exp<EXP>& x,
double y
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_col_vector(x) &&
(get_w().size() == 0 || get_w().size() == x.size()),
"\t void rls::train()"
<< "\n\t invalid arguments were given to this function"
<< "\n\t is_col_vector(x): " << is_col_vector(x)
<< "\n\t x.size(): " << x.size()
<< "\n\t get_w().size(): " << get_w().size()
<< "\n\t this: " << this
);
if (R.size() == 0)
{
R = identity_matrix<double>(x.size())*C;
w.set_size(x.size());
w = 0;
}
const double l = 1.0/forget_factor;
R = l*R - (l*l*R*x*trans(x)*trans(R))/(1 + l*trans(x)*R*x);
// R should always be symmetric. This line improves numeric stability of this algorithm.
R = 0.5*(R + trans(R));
w = w + R*x*(y - trans(x)*w);
}
const matrix<double,0,1>& get_w(
) const
{
return w;
}
template <typename EXP>
double operator() (
const matrix_exp<EXP>& x
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(is_col_vector(x) && get_w().size() == x.size(),
"\t double rls::operator()()"
<< "\n\t invalid arguments were given to this function"
<< "\n\t is_col_vector(x): " << is_col_vector(x)
<< "\n\t x.size(): " << x.size()
<< "\n\t get_w().size(): " << get_w().size()
<< "\n\t this: " << this
);
return dot(x,w);
}
decision_function<linear_kernel<matrix<double,0,1> > > get_decision_function (
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(get_w().size() != 0,
"\t decision_function rls::get_decision_function()"
<< "\n\t invalid arguments were given to this function"
<< "\n\t get_w().size(): " << get_w().size()
<< "\n\t this: " << this
);
decision_function<linear_kernel<matrix<double,0,1> > > df;
df.alpha.set_size(1);
df.basis_vectors.set_size(1);
df.b = 0;
df.alpha = 1;
df.basis_vectors(0) = w;
return df;
}
private:
matrix<double,0,1> w;
matrix<double> R;
double C;
double forget_factor;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_RLs_H__
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_RLs_ABSTRACT_H__
#ifdef DLIB_RLs_ABSTRACT_H__
#include "../matrix/matrix_abstract.h"
#include "function_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
class rls
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an implementation of the linear version of the recursive least
squares algorithm. It accepts training points incrementally and, at
each step, maintains the solution to the following optimization problem:
find w minimizing: 0.5*dot(w,w) + C*sum_i(y_i - trans(x_i)*w)^2
Where (x_i,y_i) are training pairs. x_i is some vector and y_i is a target
scalar value.
This object can also be configured to use exponential forgetting. This is
where each training example is weighted by pow(forget_factor, i), where i
indicates the sample's age. So older samples are weighted less in the
least squares solution and therefore become forgotten after some time. Note
also that this forgetting applies to the regularizer as well. So if forgetting
is used then this object slowly converts itself to an unregularized version
of recursive least squares.
!*/
public:
explicit rls(
double forget_factor,
double C = 1000
);
/*!
requires
- 0 < forget_factor <= 1
- 0 < C
ensures
- #get_w().size() == 0
- #get_c() == C
- #get_forget_factor() == forget_factor
!*/
rls(
);
/*!
ensures
- #get_w().size() == 0
- #get_c() == 1000
- #get_forget_factor() == 1
!*/
double get_c(
) const;
/*!
ensures
- returns the regularization parameter. It is the parameter
that determines the trade-off between trying to fit the training
data or allowing more errors but hopefully improving the generalization
of the resulting regression. Larger values encourage exact fitting while
smaller values of C may encourage better generalization.
!*/
double get_forget_factor(
) const;
/*!
ensures
- returns the exponential forgetting factor. A value of 1 disables forgetting
and results in normal least squares regression. On the other hand, a smaller
value causes the regression to forget about old training examples and prefer
instead to fit more recent examples. The closer the forget factor is to
zero the faster old examples are forgotten.
!*/
template <typename EXP>
void train (
const matrix_exp<EXP>& x,
double y
)
/*!
requires
- is_col_vector(x) == true
- if (get_w().size() != 0) then
- x.size() == get_w().size()
(i.e. all training examples must have the same
dimensionality)
ensures
- #get_w().size() == x.size()
- updates #get_w() such that it contains the solution to the least
squares problem of regressing the given x onto the given y as well
as all the previous training examples supplied to train().
!*/
const matrix<double,0,1>& get_w(
) const;
/*!
ensures
- returns the regression weights. These are the values learned by the
least squares procedure. If train() has not been called then this
function returns an empty vector.
!*/
template <typename EXP>
double operator() (
const matrix_exp<EXP>& x
) const;
/*!
requires
- is_col_vector(x) == true
- get_w().size() == x.size()
ensures
- returns dot(x, get_w())
!*/
decision_function<linear_kernel<matrix<double,0,1> > > get_decision_function (
) const;
/*!
requires
- get_w().size() != 0
ensures
- returns a decision function DF such that:
- DF(x) == dot(x, get_w())
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_RLs_ABSTRACT_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment