Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
347863c3
Commit
347863c3
authored
Sep 15, 2017
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added loss_ranking_ layer
parent
b6dc0d8e
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
276 additions
and
0 deletions
+276
-0
loss.h
dlib/dnn/loss.h
+142
-0
loss_abstract.h
dlib/dnn/loss_abstract.h
+88
-0
ranking.cpp
dlib/test/ranking.cpp
+46
-0
No files found.
dlib/dnn/loss.h
View file @
347863c3
...
...
@@ -10,6 +10,7 @@
#include "../geometry.h"
#include "../image_processing/box_overlap_testing.h"
#include "../image_processing/full_object_detection.h"
#include "../svm/ranking_tools.h"
#include <sstream>
namespace
dlib
...
...
@@ -1418,6 +1419,147 @@ namespace dlib
template
<
typename
SUBNET
>
using
loss_metric
=
add_loss_layer
<
loss_metric_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
loss_ranking_
{
public
:
typedef
float
training_label_type
;
// nominally +1/-1
typedef
float
output_label_type
;
// ranking score
template
<
typename
SUB_TYPE
,
typename
label_iterator
>
void
to_label
(
const
tensor
&
input_tensor
,
const
SUB_TYPE
&
sub
,
label_iterator
iter
)
const
{
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
);
const
tensor
&
output_tensor
=
sub
.
get_output
();
DLIB_CASSERT
(
output_tensor
.
nr
()
==
1
&&
output_tensor
.
nc
()
==
1
&&
output_tensor
.
k
()
==
1
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
output_tensor
.
num_samples
());
const
float
*
out_data
=
output_tensor
.
host
();
for
(
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
{
*
iter
++
=
out_data
[
i
];
}
}
template
<
typename
const_label_iterator
,
typename
SUBNET
>
double
compute_loss_value_and_gradient
(
const
tensor
&
input_tensor
,
const_label_iterator
truth
,
SUBNET
&
sub
)
const
{
const
tensor
&
output_tensor
=
sub
.
get_output
();
tensor
&
grad
=
sub
.
get_gradient_input
();
DLIB_CASSERT
(
sub
.
sample_expansion_factor
()
==
1
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
!=
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
%
sub
.
sample_expansion_factor
()
==
0
);
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
grad
.
num_samples
());
DLIB_CASSERT
(
input_tensor
.
num_samples
()
==
output_tensor
.
num_samples
());
DLIB_CASSERT
(
output_tensor
.
nr
()
==
1
&&
output_tensor
.
nc
()
==
1
&&
output_tensor
.
k
()
==
1
);
DLIB_CASSERT
(
grad
.
nr
()
==
1
&&
grad
.
nc
()
==
1
&&
grad
.
k
()
==
1
);
std
::
vector
<
double
>
rel_scores
;
std
::
vector
<
double
>
nonrel_scores
;
std
::
vector
<
long
>
rel_idx
,
nonrel_idx
;
const
float
*
out_data
=
output_tensor
.
host
();
float
*
g
=
grad
.
host_write_only
();
for
(
long
i
=
0
;
i
<
output_tensor
.
num_samples
();
++
i
)
{
const
float
y
=
*
truth
++
;
if
(
y
>
0
)
{
rel_scores
.
push_back
(
out_data
[
i
]
-
y
);
rel_idx
.
push_back
(
i
);
}
else
if
(
y
<
0
)
{
nonrel_scores
.
push_back
(
out_data
[
i
]
-
y
);
nonrel_idx
.
push_back
(
i
);
}
else
{
g
[
i
]
=
0
;
}
}
std
::
vector
<
unsigned
long
>
rel_counts
;
std
::
vector
<
unsigned
long
>
nonrel_counts
;
count_ranking_inversions
(
rel_scores
,
nonrel_scores
,
rel_counts
,
nonrel_counts
);
const
unsigned
long
total_pairs
=
rel_scores
.
size
()
*
nonrel_scores
.
size
();
DLIB_CASSERT
(
total_pairs
>
0
,
"You can't give a ranking mini-batch that contains only one class. Both classes must be represented."
);
const
double
scale
=
1
.
0
/
total_pairs
;
double
loss
=
0
;
for
(
unsigned
long
k
=
0
;
k
<
rel_counts
.
size
();
++
k
)
{
loss
-=
rel_counts
[
k
]
*
rel_scores
[
k
];
g
[
rel_idx
[
k
]]
=
-
1
.
0
*
rel_counts
[
k
]
*
scale
;
}
for
(
unsigned
long
k
=
0
;
k
<
nonrel_counts
.
size
();
++
k
)
{
loss
+=
nonrel_counts
[
k
]
*
nonrel_scores
[
k
];
g
[
nonrel_idx
[
k
]]
=
nonrel_counts
[
k
]
*
scale
;
}
return
loss
*
scale
;
}
friend
void
serialize
(
const
loss_ranking_
&
,
std
::
ostream
&
out
)
{
serialize
(
"loss_ranking_"
,
out
);
}
friend
void
deserialize
(
loss_ranking_
&
,
std
::
istream
&
in
)
{
std
::
string
version
;
deserialize
(
version
,
in
);
if
(
version
!=
"loss_ranking_"
)
throw
serialization_error
(
"Unexpected version found while deserializing dlib::loss_ranking_."
);
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
loss_ranking_
&
)
{
out
<<
"loss_ranking"
;
return
out
;
}
friend
void
to_xml
(
const
loss_ranking_
&
/*item*/
,
std
::
ostream
&
out
)
{
out
<<
"<loss_ranking/>"
;
}
};
template
<
typename
SUBNET
>
using
loss_ranking
=
add_loss_layer
<
loss_ranking_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
loss_mean_squared_
...
...
dlib/dnn/loss_abstract.h
View file @
347863c3
...
...
@@ -691,6 +691,94 @@ namespace dlib
template
<
typename
SUBNET
>
using
loss_metric
=
add_loss_layer
<
loss_metric_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
loss_ranking_
{
/*!
WHAT THIS OBJECT REPRESENTS
This object implements the loss layer interface defined above by
EXAMPLE_LOSS_LAYER_. In particular, it implements the pairwise ranking
loss described in the paper:
Optimizing Search Engines using Clickthrough Data by Thorsten Joachims
This is the same loss function used by the dlib::svm_rank_trainer object.
Therefore, it is generally appropriate when you have a two class problem
and you want to learn a function that ranks one class before the other.
So for example, suppose you have two classes of data. Objects of type A
and objects of type B. Moreover, suppose that you want to sort the objects
so that A objects always come before B objects. This loss will help you
learn a function that assigns a real number to each object such that A
objects get a larger number assigned to them than B objects. This lets you
then sort the objects according to the output of the neural network and
obtain the desired result of having A objects come before B objects.
The training labels should be positive values for objects you want to get
high scores and negative for objects that should get small scores. So
relative to our A/B example, you would give A objects labels of +1 and B
objects labels of -1. This should cause the learned network to give A
objects large positive values and B objects negative values.
Finally, the specific loss function is:
For all pairs of positive vs negative training examples A_i and B_j respectively:
sum_ij: max(0, B_i - A_j + margin_ij)
where margin_ij = the label for A_j minus the label for B_i. If you
always use +1 and -1 labels then the margin is always 2. However, this
formulation allows you to give certain training samples different weight by
adjusting the training labels appropriately.
!*/
public
:
typedef
float
training_label_type
;
typedef
float
output_label_type
;
template
<
typename
SUB_TYPE
,
typename
label_iterator
>
void
to_label
(
const
tensor
&
input_tensor
,
const
SUB_TYPE
&
sub
,
label_iterator
iter
)
const
;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::to_label() except
it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
and the output label is the predicted ranking score.
!*/
template
<
typename
const_label_iterator
,
typename
SUBNET
>
double
compute_loss_value_and_gradient
(
const
tensor
&
input_tensor
,
const_label_iterator
truth
,
SUBNET
&
sub
)
const
;
/*!
This function has the same interface as EXAMPLE_LOSS_LAYER_::compute_loss_value_and_gradient()
except it has the additional calling requirements that:
- sub.get_output().nr() == 1
- sub.get_output().nc() == 1
- sub.get_output().k() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
- sub.sample_expansion_factor() == 1
!*/
};
template
<
typename
SUBNET
>
using
loss_ranking
=
add_loss_layer
<
loss_ranking_
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
class
loss_mean_squared_
...
...
dlib/test/ranking.cpp
View file @
347863c3
...
...
@@ -2,6 +2,7 @@
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/svm.h>
#include <dlib/rand.h>
#include <dlib/dnn.h>
#include <sstream>
#include <string>
#include <cstdlib>
...
...
@@ -403,6 +404,50 @@ namespace
DLIB_TEST
(
std
::
abs
(
abs
(
df
.
b
-
df2
.
b
))
<
1e-8
);
}
// ----------------------------------------------------------------------------------------
void
test_dnn_ranking_loss
()
{
print_spinner
();
typedef
matrix
<
double
,
2
,
1
>
sample_type
;
ranking_pair
<
sample_type
>
data
;
sample_type
samp
;
// Make one relevant example.
samp
=
1
,
0
;
data
.
relevant
.
push_back
(
samp
);
// Now make a non-relevant example.
samp
=
0
,
1
;
data
.
nonrelevant
.
push_back
(
samp
);
using
net_type
=
loss_ranking
<
fc_no_bias
<
1
,
input
<
matrix
<
float
,
2
,
1
>>>>
;
net_type
net
;
dnn_trainer
<
net_type
>
trainer
(
net
,
sgd
(
1.0
,
0.9
));
std
::
vector
<
matrix
<
float
,
2
,
1
>>
x
;
std
::
vector
<
float
>
y
;
x
.
push_back
(
matrix_cast
<
float
>
(
data
.
relevant
[
0
]));
y
.
push_back
(
1
);
x
.
push_back
(
matrix_cast
<
float
>
(
data
.
nonrelevant
[
0
]));
y
.
push_back
(
-
1
);
//trainer.be_verbose();
trainer
.
set_learning_rate_schedule
(
logspace
(
-
1
,
-
7
,
2000
));
trainer
.
train
(
x
,
y
);
matrix
<
float
>
params
=
mat
(
net
.
subnet
().
layer_details
().
get_layer_params
());
dlog
<<
LINFO
<<
"params: "
<<
params
;
dlog
<<
LINFO
<<
"relevant output score: "
<<
net
(
x
[
0
]);
dlog
<<
LINFO
<<
"nonrelevant output score: "
<<
net
(
x
[
1
]);
DLIB_TEST
(
std
::
abs
(
params
(
0
)
-
1
)
<
0.0001
);
DLIB_TEST
(
std
::
abs
(
params
(
1
)
+
1
)
<
0.0001
);
DLIB_TEST
(
std
::
abs
(
net
(
x
[
0
])
-
1
)
<
0.001
);
DLIB_TEST
(
std
::
abs
(
net
(
x
[
1
])
+
1
)
<
0.001
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
...
...
@@ -427,6 +472,7 @@ namespace
test_svmrank_weight_force_dense
<
false
>
();
run_prior_test
();
run_prior_sparse_test
();
test_dnn_ranking_loss
();
}
}
a
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment