Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
3586d409
Commit
3586d409
authored
Oct 26, 2016
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added tt::scale_columns(). Also optimized some other cuda kernel launches a
little.
parent
2a2956a2
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
73 additions
and
4 deletions
+73
-4
cuda_dlib.cu
dlib/dnn/cuda_dlib.cu
+25
-2
cuda_dlib.h
dlib/dnn/cuda_dlib.h
+6
-0
tensor_tools.cpp
dlib/dnn/tensor_tools.cpp
+26
-0
tensor_tools.h
dlib/dnn/tensor_tools.h
+16
-2
No files found.
dlib/dnn/cuda_dlib.cu
View file @
3586d409
...
...
@@ -142,7 +142,9 @@ namespace dlib
)
{
invnorms.set_size(data.num_samples());
launch_kernel(_cuda_inverse_norms,max_jobs(data.size()), invnorms.device(), data.device(), data.num_samples(), data.size()/data.num_samples(), eps);
dim3 blocks(10,1);
dim3 threads(32,32); // x size must be 32 because we are using warp_reduce_atomic_add() in the kernel.
_cuda_inverse_norms<<<blocks,threads>>>(invnorms.device(), data.device(), data.num_samples(), data.size()/data.num_samples(), eps);
}
// ----------------------------------------------------------------------------------------
...
...
@@ -174,7 +176,28 @@ namespace dlib
)
{
out.set_size(lhs.num_samples());
launch_kernel(_cuda_dot_prods, max_jobs(lhs.size()), out.device(), lhs.device(), rhs.device(), lhs.num_samples(), lhs.size()/lhs.num_samples());
dim3 blocks(10,1);
dim3 threads(32,32); // x size must be 32 because we are using warp_reduce_atomic_add() in the kernel.
_cuda_dot_prods<<<blocks,threads>>>(out.device(), lhs.device(), rhs.device(), lhs.num_samples(), lhs.size()/lhs.num_samples());
}
// ----------------------------------------------------------------------------------------
__global__ void _cuda_scale_columns(float* out, const float* m, const float* v, size_t nr, size_t nc)
{
for (auto j : grid_stride_range(0, nr*nc))
{
out[j] = m[j]*v[j%nc];
}
}
void scale_columns (
tensor& out,
const tensor& m,
const tensor& v
)
{
launch_kernel(_cuda_scale_columns, max_jobs(m.size()), out.device(), m.device(), v.device(), m.num_samples(), m.size()/m.num_samples());
}
// ----------------------------------------------------------------------------------------
...
...
dlib/dnn/cuda_dlib.h
View file @
3586d409
...
...
@@ -120,6 +120,12 @@ namespace dlib
const
tensor
&
rhs
);
void
scale_columns
(
tensor
&
out
,
const
tensor
&
m
,
const
tensor
&
v
);
void
scale_rows
(
tensor
&
out
,
const
tensor
&
m
,
...
...
dlib/dnn/tensor_tools.cpp
View file @
3586d409
...
...
@@ -69,6 +69,27 @@ namespace dlib { namespace tt
#endif
}
void
scale_columns
(
tensor
&
out
,
const
tensor
&
m
,
const
tensor
&
v
)
{
DLIB_CASSERT
(
have_same_dimensions
(
out
,
m
));
DLIB_CASSERT
(
is_vector
(
v
));
if
(
m
.
size
()
==
0
&&
v
.
size
()
==
0
)
return
;
DLIB_CASSERT
(
m
.
size
()
!=
0
);
DLIB_CASSERT
(
m
.
size
()
/
m
.
num_samples
()
==
v
.
size
());
#ifdef DLIB_USE_CUDA
cuda
::
scale_columns
(
out
,
m
,
v
);
#else
DLIB_CASSERT
(
false
,
"shouldn't be called right now"
);
out
=
scale_columns
(
mat
(
m
),
mat
(
v
));
#endif
}
void
scale_rows
(
tensor
&
out
,
const
tensor
&
m
,
...
...
@@ -76,6 +97,11 @@ namespace dlib { namespace tt
)
{
DLIB_CASSERT
(
have_same_dimensions
(
out
,
m
));
DLIB_CASSERT
(
is_vector
(
v
));
if
(
m
.
size
()
==
0
&&
v
.
size
()
==
0
)
return
;
DLIB_CASSERT
(
m
.
size
()
!=
0
);
DLIB_CASSERT
(
m
.
num_samples
()
==
v
.
size
());
#ifdef DLIB_USE_CUDA
cuda
::
scale_rows
(
out
,
m
,
v
);
...
...
dlib/dnn/tensor_tools.h
View file @
3586d409
...
...
@@ -48,6 +48,20 @@ namespace dlib { namespace tt
- #out == sum_cols(pointwise_multiply(mat(lhs), mat(rhs)));
!*/
void
scale_columns
(
tensor
&
out
,
const
tensor
&
m
,
const
tensor
&
v
);
/*!
requires
- have_same_dimensions(out,m) == true
- is_vector(v) == true
- v.size() == mat(m).nc()
ensures
- performs: out = scale_columns(mat(m),mat(v));
!*/
void
scale_rows
(
tensor
&
out
,
const
tensor
&
m
,
...
...
@@ -56,7 +70,7 @@ namespace dlib { namespace tt
/*!
requires
- have_same_dimensions(out,m) == true
- is_vector(
mat(v)
) == true
- is_vector(
v
) == true
- v.size() == m.num_samples()
ensures
- performs: out = scale_rows(mat(m),mat(v));
...
...
@@ -75,7 +89,7 @@ namespace dlib { namespace tt
- have_same_dimensions(out,m1) == true
- have_same_dimensions(out,m2) == true
- have_same_dimensions(v1,v2) == true
- is_vector(
mat(v1)
) == true
- is_vector(
v1
) == true
- v1.size() == m1.num_samples()
ensures
- performs:
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment