Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
37278e99
Commit
37278e99
authored
Oct 03, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
cleaned up trainer a bit
parent
6d281c31
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
141 additions
and
22 deletions
+141
-22
core.h
dlib/dnn/core.h
+127
-22
core_abstract.h
dlib/dnn/core_abstract.h
+14
-0
No files found.
dlib/dnn/core.h
View file @
37278e99
...
...
@@ -1420,15 +1420,24 @@ namespace dlib
typedef
typename
net_type
::
label_type
label_type
;
typedef
typename
net_type
::
input_type
input_type
;
dnn_trainer
()
{}
dnn_trainer
(
)
{
init
();
}
explicit
dnn_trainer
(
const
net_type
&
net_
)
:
net
(
net_
)
{}
explicit
dnn_trainer
(
const
net_type
&
net_
)
:
net
(
net_
)
{
init
();
}
dnn_trainer
(
const
net_type
&
net_
,
const
solver_type
&
solver_
)
:
net
(
net_
),
solvers
(
solver_
)
{}
)
:
net
(
net_
),
solvers
(
solver_
)
{
init
();
}
const
net_type
&
get_net
(
)
const
{
return
net
;
}
...
...
@@ -1447,6 +1456,29 @@ namespace dlib
solvers
=
solver_
;
}
unsigned
long
get_mini_batch_size
(
)
const
{
return
mini_batch_size
;
}
void
set_mini_batch_size
(
unsigned
long
batch_size
)
{
DLIB_CASSERT
(
batch_size
>
0
,
""
);
mini_batch_size
=
batch_size
;
}
unsigned
long
get_num_epochs
(
)
const
{
return
num_epochs
;
}
void
set_num_epochs
(
unsigned
long
num
)
const
{
DLIB_CASSERT
(
num
>
0
,
""
);
num_epochs
=
num
;
}
const
sstack
<
solver_type
,
net_type
::
num_layers
>&
get_solvers
(
)
const
{
return
solvers
;
}
...
...
@@ -1458,19 +1490,50 @@ namespace dlib
const
std
::
vector
<
label_type
>&
labels
)
{
DLIB_CASSERT
(
data
.
size
()
==
labels
.
size
(),
""
);
DLIB_CASSERT
(
data
.
size
()
==
labels
.
size
()
&&
data
.
size
()
>
0
,
""
);
resizable_tensor
t1
,
t2
;
const
int
batch_size
=
11
;
for
(
int
iter
=
0
;
iter
<
300
;
++
iter
)
for
(
unsigned
long
epoch_iteration
=
0
;
epoch_iteration
<
num_epochs
;
++
epoch_iteration
)
{
for
(
unsigned
long
i
=
0
;
i
<
data
.
size
();
i
+=
batch_size
)
unsigned
long
j
=
0
;
// Load two tensors worth of data at once so we can overlap the computation
// and data transfer between the host and the device.
if
(
j
<
data
.
size
())
{
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t1
);
j
+=
mini_batch_size
;
}
if
(
j
<
data
.
size
())
{
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t2
);
j
+=
mini_batch_size
;
}
unsigned
long
i
=
0
;
while
(
i
<
data
.
size
())
{
// TODO, move the contents of update() here and do the alternating tensor
// loading thing to hide GPU transfer latency.
std
::
cout
<<
"loss: "
<<
net
.
update
(
data
.
begin
()
+
i
,
data
.
begin
()
+
std
::
min
(
i
+
batch_size
,
data
.
size
()),
labels
.
begin
()
+
i
,
solvers
)
<<
std
::
endl
;
net
.
update
(
t1
,
labels
.
begin
()
+
i
,
solvers
);
i
+=
mini_batch_size
;
if
(
j
<
data
.
size
())
{
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t1
);
j
+=
mini_batch_size
;
}
if
(
i
<
data
.
size
())
{
net
.
update
(
t2
,
labels
.
begin
()
+
i
,
solvers
);
i
+=
mini_batch_size
;
if
(
j
<
data
.
size
())
{
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t2
);
j
+=
mini_batch_size
;
}
}
}
}
return
net
;
...
...
@@ -1480,20 +1543,53 @@ namespace dlib
const
std
::
vector
<
input_type
>&
data
)
{
DLIB_CASSERT
(
data
.
size
()
>
0
,
""
);
const
bool
has_unsupervised_loss
=
std
::
is_same
<
no_label_type
,
label_type
>::
value
;
static_assert
(
has_unsupervised_loss
,
"You can only call this version of train() when using an unsupervised loss."
);
const
int
batch_size
=
10
;
for
(
int
iter
=
0
;
iter
<
300
;
++
iter
)
resizable_tensor
t1
,
t2
;
for
(
unsigned
long
epoch_iteration
=
0
;
epoch_iteration
<
num_epochs
;
++
epoch_iteration
)
{
for
(
unsigned
long
i
=
0
;
i
<
data
.
size
();
i
+=
batch_size
)
unsigned
long
j
=
0
;
// Load two tensors worth of data at once so we can overlap the computation
// and data transfer between the host and the device.
if
(
j
<
data
.
size
())
{
// TODO, move the contents of update() here and do the alternating tensor
// loading thing to hide GPU transfer latency.
std
::
cout
<<
"loss: "
<<
net
.
update
(
data
.
begin
()
+
i
,
data
.
begin
()
+
std
::
min
(
i
+
batch_size
,
data
.
size
()),
solvers
)
<<
std
::
endl
;
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t1
);
j
+=
mini_batch_size
;
}
if
(
j
<
data
.
size
())
{
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t2
);
j
+=
mini_batch_size
;
}
unsigned
long
i
=
0
;
while
(
i
<
data
.
size
())
{
net
.
update
(
t1
,
solvers
);
i
+=
mini_batch_size
;
if
(
j
<
data
.
size
())
{
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t1
);
j
+=
mini_batch_size
;
}
if
(
i
<
data
.
size
())
{
net
.
update
(
t2
,
solvers
);
i
+=
mini_batch_size
;
if
(
j
<
data
.
size
())
{
net
.
to_tensor
(
data
.
begin
()
+
j
,
data
.
begin
()
+
std
::
min
(
j
+
mini_batch_size
,
data
.
size
()),
t2
);
j
+=
mini_batch_size
;
}
}
}
}
return
net
;
...
...
@@ -1501,6 +1597,15 @@ namespace dlib
private
:
void
init
()
{
num_epochs
=
300
;
mini_batch_size
=
11
;
}
unsigned
long
num_epochs
;
unsigned
long
mini_batch_size
;
net_type
net
;
sstack
<
solver_type
,
net_type
::
num_layers
>
solvers
;
};
...
...
dlib/dnn/core_abstract.h
View file @
37278e99
...
...
@@ -975,6 +975,20 @@ namespace dlib
sstack
<
solver_type
,
net_type
::
num_layers
>&
get_solvers
(
);
unsigned
long
get_mini_batch_size
(
)
const
;
void
set_mini_batch_size
(
unsigned
long
batch_size
);
unsigned
long
get_num_epochs
(
)
const
;
void
set_num_epochs
(
unsigned
long
num
)
const
;
const
net_type
&
train
(
const
std
::
vector
<
input_type
>&
data
,
const
std
::
vector
<
label_type
>&
labels
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment