Commit 3757fc73 authored by Davis King's avatar Davis King

Made the order of constructor arguments in the various overloads

for the assignment_function and sequence_labeler consistent.
parent 890d4e53
...@@ -54,8 +54,8 @@ namespace dlib ...@@ -54,8 +54,8 @@ namespace dlib
} }
assignment_function( assignment_function(
const feature_extractor& fe_, const matrix<double,0,1>& weights_,
const matrix<double,0,1>& weights_ const feature_extractor& fe_
) : ) :
fe(fe_), fe(fe_),
weights(weights_), weights(weights_),
...@@ -63,7 +63,7 @@ namespace dlib ...@@ -63,7 +63,7 @@ namespace dlib
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()), DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()),
"\t assignment_function::assignment_function(fe_,weights_)" "\t assignment_function::assignment_function(weights_,fe_)"
<< "\n\t These sizes should match" << "\n\t These sizes should match"
<< "\n\t fe_.num_features(): " << fe_.num_features() << "\n\t fe_.num_features(): " << fe_.num_features()
<< "\n\t weights_.size(): " << weights_.size() << "\n\t weights_.size(): " << weights_.size()
...@@ -72,8 +72,8 @@ namespace dlib ...@@ -72,8 +72,8 @@ namespace dlib
} }
assignment_function( assignment_function(
const feature_extractor& fe_,
const matrix<double,0,1>& weights_, const matrix<double,0,1>& weights_,
const feature_extractor& fe_,
bool force_assignment_ bool force_assignment_
) : ) :
fe(fe_), fe(fe_),
...@@ -82,7 +82,7 @@ namespace dlib ...@@ -82,7 +82,7 @@ namespace dlib
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()), DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()),
"\t assignment_function::assignment_function(fe_,weights_,force_assignment_)" "\t assignment_function::assignment_function(weights_,fe_,force_assignment_)"
<< "\n\t These sizes should match" << "\n\t These sizes should match"
<< "\n\t fe_.num_features(): " << fe_.num_features() << "\n\t fe_.num_features(): " << fe_.num_features()
<< "\n\t weights_.size(): " << weights_.size() << "\n\t weights_.size(): " << weights_.size()
...@@ -209,7 +209,7 @@ namespace dlib ...@@ -209,7 +209,7 @@ namespace dlib
deserialize(weights, in); deserialize(weights, in);
deserialize(force_assignment, in); deserialize(force_assignment, in);
item = assignment_function<feature_extractor>(fe, weights, force_assignment); item = assignment_function<feature_extractor>(weights, fe, force_assignment);
} }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
......
...@@ -161,8 +161,8 @@ namespace dlib ...@@ -161,8 +161,8 @@ namespace dlib
!*/ !*/
assignment_function( assignment_function(
const feature_extractor& fe, const matrix<double,0,1>& weights,
const matrix<double,0,1>& weights const feature_extractor& fe
); );
/*! /*!
requires requires
...@@ -174,8 +174,8 @@ namespace dlib ...@@ -174,8 +174,8 @@ namespace dlib
!*/ !*/
assignment_function( assignment_function(
const feature_extractor& fe,
const matrix<double,0,1>& weights, const matrix<double,0,1>& weights,
const feature_extractor& fe,
bool force_assignment bool force_assignment
); );
/*! /*!
......
...@@ -202,15 +202,15 @@ namespace dlib ...@@ -202,15 +202,15 @@ namespace dlib
} }
sequence_labeler( sequence_labeler(
const feature_extractor& fe_, const matrix<double,0,1>& weights_,
const matrix<double,0,1>& weights_ const feature_extractor& fe_
) : ) :
fe(fe_), fe(fe_),
weights(weights_) weights(weights_)
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()), DLIB_ASSERT(fe_.num_features() == static_cast<unsigned long>(weights_.size()),
"\t sequence_labeler::sequence_labeler(fe_,weights_)" "\t sequence_labeler::sequence_labeler(weights_,fe_)"
<< "\n\t These sizes should match" << "\n\t These sizes should match"
<< "\n\t fe_.num_features(): " << fe_.num_features() << "\n\t fe_.num_features(): " << fe_.num_features()
<< "\n\t weights_.size(): " << weights_.size() << "\n\t weights_.size(): " << weights_.size()
...@@ -294,7 +294,7 @@ namespace dlib ...@@ -294,7 +294,7 @@ namespace dlib
deserialize(fe, in); deserialize(fe, in);
deserialize(weights, in); deserialize(weights, in);
item = sequence_labeler<feature_extractor>(fe, weights); item = sequence_labeler<feature_extractor>(weights, fe);
} }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
......
...@@ -221,8 +221,8 @@ namespace dlib ...@@ -221,8 +221,8 @@ namespace dlib
!*/ !*/
sequence_labeler( sequence_labeler(
const feature_extractor& fe, const matrix<double,0,1>& weights,
const matrix<double,0,1>& weights const feature_extractor& fe
); );
/*! /*!
requires requires
......
...@@ -185,7 +185,7 @@ namespace dlib ...@@ -185,7 +185,7 @@ namespace dlib
solver(prob, weights); solver(prob, weights);
return assignment_function<feature_extractor>(fe,weights,force_assignment); return assignment_function<feature_extractor>(weights,fe,force_assignment);
} }
......
...@@ -182,7 +182,7 @@ namespace dlib ...@@ -182,7 +182,7 @@ namespace dlib
prob.set_max_cache_size(max_cache_size); prob.set_max_cache_size(max_cache_size);
solver(prob, weights); solver(prob, weights);
return sequence_labeler<feature_extractor>(fe,weights); return sequence_labeler<feature_extractor>(weights,fe);
} }
private: private:
......
...@@ -57,7 +57,7 @@ namespace dlib ...@@ -57,7 +57,7 @@ namespace dlib
given labels. In particular, it attempts to learn to predict labels[i] given labels. In particular, it attempts to learn to predict labels[i]
based on samples[i]. Or in other words, this object can be used to learn based on samples[i]. Or in other words, this object can be used to learn
a parameter vector, w, such that an assignment_function declared as: a parameter vector, w, such that an assignment_function declared as:
assignment_function<feature_extractor> assigner(fe,w,force_assignment) assignment_function<feature_extractor> assigner(w,fe,force_assignment)
results in an assigner object which attempts to compute the following mapping: results in an assigner object which attempts to compute the following mapping:
labels[i] == labeler(samples[i]) labels[i] == labeler(samples[i])
- This object will use num_threads threads during the optimization - This object will use num_threads threads during the optimization
......
...@@ -57,7 +57,7 @@ namespace dlib ...@@ -57,7 +57,7 @@ namespace dlib
given labels. In particular, it attempts to learn to predict labels[i] given labels. In particular, it attempts to learn to predict labels[i]
based on samples[i]. Or in other words, this object can be used to learn based on samples[i]. Or in other words, this object can be used to learn
a parameter vector, w, such that a sequence_labeler declared as: a parameter vector, w, such that a sequence_labeler declared as:
sequence_labeler<feature_extractor> labeler(fe,w) sequence_labeler<feature_extractor> labeler(w,fe)
results in a labeler object which attempts to compute the following mapping: results in a labeler object which attempts to compute the following mapping:
labels[i] == labeler(samples[i]) labels[i] == labeler(samples[i])
- This object will use num_threads threads during the optimization - This object will use num_threads threads during the optimization
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment