Commit 3a2ffaa7 authored by Davis King's avatar Davis King

updated the docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402460
parent bf130051
......@@ -966,6 +966,54 @@
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>rvm_regression_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/rvm_abstract.h</spec_file>
<description>
<p>
Trains a relevance vector machine for solving regression problems.
Outputs a <a href="#decision_function">decision_function</a> that represents the learned
regression function.
</p>
The implementation of the RVM training algorithm used by this library is based
on the following paper:
<blockquote>
Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation
for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings
of the Ninth International Workshop on Artificial Intelligence and Statistics,
Key West, FL, Jan 3-6.
</blockquote>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>rvm_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/rvm_abstract.h</spec_file>
<description>
<p>
Trains a relevance vector machine for solving binary classification problems.
Outputs a <a href="#decision_function">decision_function</a> that represents the learned classifier.
</p>
The implementation of the RVM training algorithm used by this library is based
on the following paper:
<blockquote>
Tipping, M. E. and A. C. Faul (2003). Fast marginal likelihood maximisation
for sparse Bayesian models. In C. M. Bishop and B. J. Frey (Eds.), Proceedings
of the Ninth International Workshop on Artificial Intelligence and Statistics,
Key West, FL, Jan 3-6.
</blockquote>
</description>
</component>
<!-- ************************************************************************* -->
......
......@@ -115,15 +115,17 @@
<li><b>Machine Learning Algorithms</b>
<ul>
<li><a href="algorithms.html#mlp">multi layer perceptrons</a> </li>
<li><a href="algorithms.html#svm_nu_trainer">support vector machines</a> for classification</li>
<li><a href="algorithms.html#mlp">Multi layer perceptrons</a> </li>
<li><a href="algorithms.html#svm_nu_trainer">Support vector machines</a> for classification</li>
<li>Relevance vector machines for <a href="algorithms.html#rvm_trainer">classification</a>
and <a href="algorithms.html#rvm_regression_trainer">regression</a> </li>
<li>An online <a href="algorithms.html#krls">kernel RLS regression</a> algorithm</li>
<li>An online kernelized <a href="algorithms.html#kcentroid">centroid estimator</a>/novelty detector</li>
<li>A kernelized <a href="algorithms.html#kkmeans">k-means</a> clustering algorithm</li>
<li><a href="algorithms.html#rbf_network_trainer">Radial Basis Function Networks</a></li>
<li>Bayesian Network inference algorithms such as the
<li>Bayesian network inference algorithms such as the
<a href="algorithms.html#bayesian_network_join_tree">join tree</a> algorithm and
<a href="algorithms.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> Markov Chain Monte Carlo algorithm</li>
<a href="algorithms.html#bayesian_network_gibbs_sampler">gibbs sampler</a> markov chain monte carlo algorithm</li>
</ul>
</li>
......
......@@ -392,6 +392,8 @@
<term link="algorithms.html#is_binary_classification_problem" name="is_binary_classification_problem"/>
<term link="algorithms.html#square_root" name="square_root"/>
<term link="algorithms.html#svm_nu_trainer" name="svm_nu_trainer"/>
<term link="algorithms.html#rvm_trainer" name="rvm_trainer"/>
<term link="algorithms.html#rvm_regression_trainer" name="rvm_regression_trainer"/>
<term link="algorithms.html#rbf_network_trainer" name="rbf_network_trainer"/>
<term link="algorithms.html#reduced" name="reduced"/>
<term link="algorithms.html#reduced_decision_function_trainer" name="reduced_decision_function_trainer"/>
......@@ -402,6 +404,7 @@
<term link="algorithms.html#cross_validate_trainer_threaded" name="cross_validate_trainer_threaded"/>
<term link="algorithms.html#test_binary_decision_function" name="test_binary_decision_function"/>
<term link="algorithms.html#svm_nu_trainer" name="support vector machine"/>
<term link="algorithms.html#rvm_trainer" name="relevance vector machine"/>
<term link="algorithms.html#vector" name="vector"/>
<term link="algorithms.html#point" name="point"/>
<term link="algorithms.html#krls" name="krls"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment