Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
41d47e98
Commit
41d47e98
authored
Nov 23, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated docs
parent
b6e274bd
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
106 additions
and
1 deletion
+106
-1
index.xml
docs/docs/index.xml
+1
-0
ml.xml
docs/docs/ml.xml
+98
-1
term_index.xml
docs/docs/term_index.xml
+7
-0
No files found.
docs/docs/index.xml
View file @
41d47e98
...
...
@@ -149,6 +149,7 @@
<li>
Structural SVM tools for solving
<a
href=
"ml.html#structural_assignment_trainer"
>
assignment problems
</a>
</li>
<li>
Structural SVM tools for
<a
href=
"ml.html#structural_object_detection_trainer"
>
object detection
</a>
in images
</li>
<li>
Structural SVM tools for
<a
href=
"ml.html#structural_graph_labeling_trainer"
>
labeling nodes
</a>
in graphs
</li>
<li>
A large-scale
<a
href=
"ml.html#svm_rank_trainer"
>
SVM-Rank
</a>
implementation
</li>
<li>
An online
<a
href=
"ml.html#krls"
>
kernel RLS regression
</a>
algorithm
</li>
<li>
An online
<a
href=
"ml.html#svm_pegasos"
>
SVM classification
</a>
algorithm
</li>
<li>
An online kernelized
<a
href=
"ml.html#kcentroid"
>
centroid estimator
</a>
/novelty detector and
...
...
docs/docs/ml.xml
View file @
41d47e98
...
...
@@ -13,7 +13,7 @@
This page documents all the machine learning algorithms present in
the library. In particular, there are algorithms for performing
classification, regression, clustering, sequence labeling, assignment learning,
graph segmentation, object detection, anomaly detection,
rank learning,
graph segmentation, object detection, anomaly detection,
and feature ranking, as well as algorithms for doing more
specialized computations.
</p>
...
...
@@ -116,6 +116,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
structural_sequence_labeling_trainer
</item>
<item>
structural_assignment_trainer
</item>
<item>
structural_graph_labeling_trainer
</item>
<item>
svm_rank_trainer
</item>
</section>
<section>
<name>
Clustering
</name>
...
...
@@ -158,6 +159,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
cross_validate_sequence_labeler
</item>
<item>
cross_validate_assignment_trainer
</item>
<item>
cross_validate_graph_labeling_trainer
</item>
<item>
cross_validate_ranking_trainer
</item>
<item>
test_binary_decision_function
</item>
<item>
test_multiclass_decision_function
</item>
<item>
test_regression_function
</item>
...
...
@@ -165,6 +167,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
test_sequence_labeler
</item>
<item>
test_assignment_function
</item>
<item>
test_graph_labeling_function
</item>
<item>
test_ranking_function
</item>
</section>
<section>
...
...
@@ -242,6 +245,9 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
compute_mean_squared_distance
</item>
<item>
kernel_matrix
</item>
<item>
sparse vectors
</item>
<item>
ranking_pair
</item>
<item>
is_ranking_problem
</item>
<item>
count_ranking_inversions
</item>
...
...
@@ -337,6 +343,20 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<!-- ************************************************************************* -->
<component>
<name>
ranking_pair
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/ranking_tools_abstract.h
</spec_file>
<description>
This object is used to contain a ranking example. Therefore, ranking_pair
objects are used to represent training examples for learning-to-rank tasks,
such as those used by the
<a
href=
"#svm_rank_trainer"
>
svm_rank_trainer
</a>
.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
kernel_matrix
</name>
<file>
dlib/svm.h
</file>
...
...
@@ -350,6 +370,34 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
<!-- ************************************************************************* -->
<component>
<name>
is_ranking_problem
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/ranking_tools_abstract.h
</spec_file>
<description>
This function takes a set of training data for a learning-to-rank problem
and reports back if it could possibly be a well formed problem.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
count_ranking_inversions
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/ranking_tools_abstract.h
</spec_file>
<description>
Given two sets of objects, X and Y, and an ordering relationship defined
between their elements, this function counts how many times we see an element
in the set Y ordered before an element in the set X. Additionally, this
routine executes efficiently in O(n*log(n)) time via the use of quick sort.
</description>
</component>
<!-- ************************************************************************* -->
<component
checked=
"true"
>
...
...
@@ -1092,6 +1140,28 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
<!-- ************************************************************************* -->
<component>
<name>
svm_rank_trainer
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/svm_rank_trainer_abstract.h
</spec_file>
<description>
This object represents a tool for training a ranking support vector machine
using linear kernels. In particular, this object is a tool for training
the Ranking SVM described in the paper:
<blockquote>
Optimizing Search Engines using Clickthrough Data by Thorsten Joachims
</blockquote>
Finally, note that the implementation of this object is done using the
<a
href=
"optimization.html#oca"
>
oca
</a>
optimizer and
<a
href=
"#count_ranking_inversions"
>
count_ranking_inversions
</a>
method.
This means that it runs in O(n*log(n)) time, making it suitable for use
with large datasets.
</description>
</component>
<!-- ************************************************************************* -->
<component>
...
...
@@ -2229,6 +2299,20 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
<!-- ************************************************************************* -->
<component>
<name>
cross_validate_ranking_trainer
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/ranking_tools_abstract.h
</spec_file>
<description>
Performs k-fold cross validation on a user supplied ranking trainer object such
as the
<a
href=
"#svm_rank_trainer"
>
svm_rank_trainer
</a>
and returns the fraction of ranking pairs ordered correctly.
</description>
</component>
<!-- ************************************************************************* -->
<component>
...
...
@@ -2274,6 +2358,19 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
<!-- ************************************************************************* -->
<component>
<name>
test_ranking_function
</name>
<file>
dlib/svm.h
</file>
<spec_file
link=
"true"
>
dlib/svm/ranking_tools_abstract.h
</spec_file>
<description>
Tests a
<a
href=
"#decision_function"
>
decision_function
</a>
's ability to correctly
rank a dataset and returns the resulting ranking accuracy.
</description>
</component>
<!-- ************************************************************************* -->
<component>
...
...
docs/docs/term_index.xml
View file @
41d47e98
...
...
@@ -250,6 +250,7 @@
<term
name=
"max_index_plus_one"
>
<term
link=
"graph_tools.html#max_index_plus_one"
name=
"for graphs"
/>
<term
link=
"dlib/svm/sparse_vector_abstract.h.html#max_index_plus_one"
name=
"for sparse vectors"
/>
<term
link=
"dlib/svm/ranking_tools_abstract.h.html#max_index_plus_one"
name=
"for ranking_pairs"
/>
</term>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"sparse_matrix_vector_multiply"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"add_to"
/>
...
...
@@ -278,6 +279,12 @@
<term
file=
"ml.html"
name=
"svm_c_trainer"
/>
<term
file=
"ml.html"
name=
"svm_one_class_trainer"
/>
<term
file=
"ml.html"
name=
"svm_c_linear_trainer"
/>
<term
file=
"ml.html"
name=
"svm_rank_trainer"
/>
<term
file=
"ml.html"
name=
"ranking_pair"
/>
<term
file=
"ml.html"
name=
"is_ranking_problem"
/>
<term
file=
"ml.html"
name=
"count_ranking_inversions"
/>
<term
file=
"ml.html"
name=
"test_ranking_function"
/>
<term
file=
"ml.html"
name=
"cross_validate_ranking_trainer"
/>
<term
file=
"ml.html"
name=
"svm_c_ekm_trainer"
/>
<term
file=
"ml.html"
name=
"rvm_trainer"
/>
<term
file=
"ml.html"
name=
"krr_trainer"
/>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment