Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
428b0bb8
Commit
428b0bb8
authored
Apr 29, 2016
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Made multi-gpu mode use GPUDirect rather than copying through the CPU.
parent
0d6e3f12
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
37 additions
and
24 deletions
+37
-24
trainer.h
dlib/dnn/trainer.h
+37
-24
No files found.
dlib/dnn/trainer.h
View file @
428b0bb8
...
...
@@ -500,8 +500,30 @@ namespace dlib
std
::
vector
<
std
::
future
<
double
>>
losses
(
devices
.
size
());
std
::
vector
<
std
::
future
<
void
>>
update_futs
(
devices
.
size
());
std
::
vector
<
matrix
<
float
>>
param_buffer
(
net_type
::
num_computational_layers
);
std
::
vector
<
matrix
<
float
>>
param_grad_buffer
(
net_type
::
num_computational_layers
);
std
::
vector
<
tt
::
multi_device_tensor_averager
>
averagers
(
net_type
::
num_computational_layers
);
if
(
devices
.
size
()
>
1
)
{
// setup the averagers to point to the tensors in the networks.
std
::
vector
<
std
::
vector
<
tensor
*>>
all_tensors
(
devices
.
size
());
for
(
size_t
i
=
0
;
i
<
all_tensors
.
size
();
++
i
)
{
all_tensors
[
i
].
resize
(
net_type
::
num_computational_layers
);
visit_layer_parameter_gradients
(
devices
[
i
]
->
net
,
[
&
](
size_t
j
,
tensor
&
t
){
all_tensors
[
i
][
j
]
=
&
t
;
});
}
// Now set each averager to average the tensors at the same layer in each
// network.
for
(
size_t
i
=
0
;
i
<
net_type
::
num_computational_layers
;
++
i
)
{
std
::
vector
<
tensor
*>
temp
(
all_tensors
.
size
());
for
(
size_t
j
=
0
;
j
<
all_tensors
.
size
();
++
j
)
temp
[
j
]
=
all_tensors
[
j
][
i
];
averagers
[
i
].
set
(
temp
);
}
}
size_t
iteration
=
0
;
while
(
job_pipe
.
dequeue
(
next_job
))
...
...
@@ -522,32 +544,22 @@ namespace dlib
// gradient updates between devices. So we do that now.
if
(
devices
.
size
()
>
1
)
{
for
(
auto
&&
p
:
param_grad_buffer
)
p
=
0
;
// now average all the parameter gradients
for
(
size_t
i
=
0
;
i
<
devices
.
size
();
++
i
)
{
visit_layer_parameter_gradients
(
devices
[
i
]
->
net
,
[
&
param_grad_buffer
](
size_t
j
,
tensor
&
t
)
{
if
(
t
.
size
()
!=
0
)
param_grad_buffer
[
j
]
+=
mat
(
t
);
});
}
// and then assign the parameter gradients back to all the networks
const
float
scale
=
1
.
0
f
/
devices
.
size
();
for
(
size_t
i
=
0
;
i
<
devices
.
size
();
++
i
)
{
visit_layer_parameter_gradients
(
devices
[
i
]
->
net
,
[
scale
,
&
param_grad_buffer
](
size_t
j
,
tensor
&
t
)
{
if
(
t
.
size
()
!=
0
)
{
t
=
param_grad_buffer
[
j
]
*
scale
;
t
.
async_copy_to_device
();
}
});
}
for
(
auto
&&
d
:
devices
)
cuda
::
device_synchronize
(
d
->
device_id
);
for
(
auto
&&
avg
:
averagers
)
avg
.
average
();
/*
for (auto&& d : devices)
cuda::device_synchronize(d->device_id);
*/
// Evey now and then force all the parameters to be the same just to
// make sure they aren't drifting apart due to any non-deterministic
// behavior on the GPU.
/*
if (iteration%5000 == 1)
{
for (auto&& p : param_buffer)
...
...
@@ -573,6 +585,7 @@ namespace dlib
});
}
}
*/
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment