Commit 4370a5f7 authored by Davis King's avatar Davis King

Split the vector_normalizer into a normal normalizer and a pca normalizer

version.  I did this mostly so that the normal version can return
matrix_type objects and thus avoid any reallocation of matrix objects
in client code.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403154
parent 23243adf
...@@ -179,11 +179,115 @@ namespace dlib ...@@ -179,11 +179,115 @@ namespace dlib
m = mean(vector_to_matrix(samples)); m = mean(vector_to_matrix(samples));
sd = reciprocal(sqrt(variance(vector_to_matrix(samples)))); sd = reciprocal(sqrt(variance(vector_to_matrix(samples))));
pca.set_size(0,0);
} }
long in_vector_size (
) const
{
return m.nr();
}
long out_vector_size (
) const
{
return m.nr();
}
const matrix_type& means (
) const
{
return m;
}
const matrix_type& std_devs (
) const
{
return sd;
}
const matrix_type& operator() (
const matrix_type& x
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(x.nr() == in_vector_size() && x.nc() == 1,
"\tmatrix vector_normalizer::operator()"
<< "\n\t you have given invalid arguments to this function"
<< "\n\t x.nr(): " << x.nr()
<< "\n\t in_vector_size(): " << in_vector_size()
<< "\n\t x.nc(): " << x.nc()
<< "\n\t this: " << this
);
temp_out = pointwise_multiply(x-m, sd);
return temp_out;
}
void swap (
vector_normalizer& item
)
{
m.swap(item.m);
sd.swap(item.sd);
temp_out.swap(item.temp_out);
}
friend void deserialize (
vector_normalizer& item,
std::istream& in
)
{
deserialize(item.m, in);
deserialize(item.sd, in);
// Keep deserializing the pca matrix for backwards compatibility.
matrix<double> pca;
deserialize(pca, in);
}
friend void serialize (
const vector_normalizer& item,
std::ostream& out
)
{
serialize(item.m, out);
serialize(item.sd, out);
// Keep serializing the pca matrix for backwards compatibility.
matrix<double> pca;
serialize(pca, out);
}
private:
// ------------------- private data members -------------------
matrix_type m, sd;
// This is just a temporary variable that doesn't contribute to the
// state of this object.
mutable matrix_type temp_out;
};
template <
typename matrix_type
>
inline void swap (
vector_normalizer<matrix_type>& a,
vector_normalizer<matrix_type>& b
) { a.swap(b); }
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class vector_normalizer_pca
{
public:
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
template <typename vector_type> template <typename vector_type>
void train_pca ( void train (
const vector_type& samples, const vector_type& samples,
const double eps = 0.99 const double eps = 0.99
) )
...@@ -195,12 +299,12 @@ namespace dlib ...@@ -195,12 +299,12 @@ namespace dlib
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(samples.size() > 0, DLIB_ASSERT(samples.size() > 0,
"\tvoid vector_normalizer::train_pca()" "\tvoid vector_normalizer_pca::train_pca()"
<< "\n\tyou have to give a nonempty set of samples to this function" << "\n\tyou have to give a nonempty set of samples to this function"
<< "\n\tthis: " << this << "\n\tthis: " << this
); );
DLIB_ASSERT(0 < eps && eps <= 1, DLIB_ASSERT(0 < eps && eps <= 1,
"\tvoid vector_normalizer::train_pca()" "\tvoid vector_normalizer_pca::train_pca()"
<< "\n\tyou have to give a nonempty set of samples to this function" << "\n\tyou have to give a nonempty set of samples to this function"
<< "\n\tthis: " << this << "\n\tthis: " << this
); );
...@@ -216,10 +320,7 @@ namespace dlib ...@@ -216,10 +320,7 @@ namespace dlib
long out_vector_size ( long out_vector_size (
) const ) const
{ {
if (pca.size() == 0) return pca.nr();
return m.nr();
else
return pca.nr();
} }
const matrix<scalar_type,0,1,mem_manager_type>& means ( const matrix<scalar_type,0,1,mem_manager_type>& means (
...@@ -246,7 +347,7 @@ namespace dlib ...@@ -246,7 +347,7 @@ namespace dlib
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(x.nr() == in_vector_size() && x.nc() == 1, DLIB_ASSERT(x.nr() == in_vector_size() && x.nc() == 1,
"\tmatrix vector_normalizer::operator()" "\tmatrix vector_normalizer_pca::operator()"
<< "\n\t you have given invalid arguments to this function" << "\n\t you have given invalid arguments to this function"
<< "\n\t x.nr(): " << x.nr() << "\n\t x.nr(): " << x.nr()
<< "\n\t in_vector_size(): " << in_vector_size() << "\n\t in_vector_size(): " << in_vector_size()
...@@ -254,21 +355,15 @@ namespace dlib ...@@ -254,21 +355,15 @@ namespace dlib
<< "\n\t this: " << this << "\n\t this: " << this
); );
if (pca.size() == 0) // If we have a pca transform matrix on hand then
{ // also apply that.
temp_out = pointwise_multiply(x-m, sd); temp_out = pca*pointwise_multiply(x-m, sd);
}
else
{
// If we have a pca transform matrix on hand then
// also apply that.
temp_out = pca*pointwise_multiply(x-m, sd);
}
return temp_out; return temp_out;
} }
void swap ( void swap (
vector_normalizer& item vector_normalizer_pca& item
) )
{ {
m.swap(item.m); m.swap(item.m);
...@@ -278,7 +373,7 @@ namespace dlib ...@@ -278,7 +373,7 @@ namespace dlib
} }
friend void deserialize ( friend void deserialize (
vector_normalizer& item, vector_normalizer_pca& item,
std::istream& in std::istream& in
) )
{ {
...@@ -288,7 +383,7 @@ namespace dlib ...@@ -288,7 +383,7 @@ namespace dlib
} }
friend void serialize ( friend void serialize (
const vector_normalizer& item, const vector_normalizer_pca& item,
std::ostream& out std::ostream& out
) )
{ {
...@@ -365,8 +460,8 @@ namespace dlib ...@@ -365,8 +460,8 @@ namespace dlib
typename matrix_type typename matrix_type
> >
inline void swap ( inline void swap (
vector_normalizer<matrix_type>& a, vector_normalizer_pca<matrix_type>& a,
vector_normalizer<matrix_type>& b vector_normalizer_pca<matrix_type>& b
) { a.swap(b); } ) { a.swap(b); }
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
......
...@@ -164,7 +164,6 @@ namespace dlib ...@@ -164,7 +164,6 @@ namespace dlib
- out_vector_size() == 0 - out_vector_size() == 0
- means().size() == 0 - means().size() == 0
- std_devs().size() == 0 - std_devs().size() == 0
- pca_matrix().size() == 0
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
This object represents something that can learn to normalize a set This object represents something that can learn to normalize a set
...@@ -174,6 +173,13 @@ namespace dlib ...@@ -174,6 +173,13 @@ namespace dlib
Also, if desired, this object can use principal component Also, if desired, this object can use principal component
analysis for the purposes of reducing the number of elements in a analysis for the purposes of reducing the number of elements in a
vector. vector.
THREAD SAFETY
Note that this object contains a cached matrix object it uses
to store intermediate results for normalization. This avoids
needing to reallocate it every time this object performs normalization
but also makes it non-thread safe. So make sure you don't share
this object between threads.
!*/ !*/
public: public:
...@@ -197,11 +203,146 @@ namespace dlib ...@@ -197,11 +203,146 @@ namespace dlib
vectors in the given set of samples. vectors in the given set of samples.
- #means() == mean(samples) - #means() == mean(samples)
- #std_devs() == reciprocal(sqrt(variance(samples))); - #std_devs() == reciprocal(sqrt(variance(samples)));
- #pca_matrix().size() == 0
!*/ !*/
long in_vector_size (
) const;
/*!
ensures
- returns the number of rows that input vectors are
required to contain if they are to be normalized by
this object.
!*/
long out_vector_size (
) const;
/*!
ensures
- returns the number of rows in the normalized vectors
that come out of this object.
!*/
const matrix_type& means (
) const;
/*!
ensures
- returns a matrix M such that:
- M.nc() == 1
- M.nr() == in_vector_size()
- M(i) == the mean of the ith input feature shown to train()
!*/
const matrix_type& std_devs (
) const;
/*!
ensures
- returns a matrix SD such that:
- SD.nc() == 1
- SD.nr() == in_vector_size()
- SD(i) == the reciprocal of the standard deviation of the ith
input feature shown to train()
!*/
const matrix_type& operator() (
const matrix_type& x
) const;
/*!
requires
- x.nr() == in_vector_size()
- x.nc() == 1
ensures
- returns a normalized version of x, call it Z, that has the
following properties:
- Z.nr() == out_vector_size()
- Z.nc() == 1
- the expected value of each element of Z is 0
- the expected variance of each element of Z is 1
- Z == pointwise_multiply(x-means(), std_devs());
!*/
void swap (
vector_normalizer& item
);
/*!
ensures
- swaps *this and item
!*/
};
template <
typename matrix_type
>
inline void swap (
vector_normalizer<matrix_type>& a,
vector_normalizer<matrix_type>& b
) { a.swap(b); }
/*!
provides a global swap function
!*/
template <
typename matrix_type,
>
void deserialize (
vector_normalizer<matrix_type>& item,
std::istream& in
);
/*!
provides deserialization support
!*/
template <
typename matrix_type,
>
void serialize (
const vector_normalizer<matrix_type>& item,
std::ostream& out
);
/*!
provides serialization support
!*/
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class vector_normalizer_pca
{
/*!
REQUIREMENTS ON matrix_type
- must be a dlib::matrix object capable of representing column
vectors
INITIAL VALUE
- in_vector_size() == 0
- out_vector_size() == 0
- means().size() == 0
- std_devs().size() == 0
- pca_matrix().size() == 0
WHAT THIS OBJECT REPRESENTS
This object represents something that can learn to normalize a set
of column vectors. In particular, normalized column vectors should
have zero mean and a variance of one.
Also, this object uses principal component analysis for the purposes
of reducing the number of elements in a vector.
THREAD SAFETY
Note that this object contains a cached matrix object it uses
to store intermediate results for normalization. This avoids
needing to reallocate it every time this object performs normalization
but also makes it non-thread safe. So make sure you don't share
this object between threads.
!*/
public:
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
template <typename vector_type> template <typename vector_type>
void train_pca ( void train (
const vector_type& samples, const vector_type& samples,
const double eps = 0.99 const double eps = 0.99
); );
...@@ -253,7 +394,6 @@ namespace dlib ...@@ -253,7 +394,6 @@ namespace dlib
- M.nc() == 1 - M.nc() == 1
- M.nr() == in_vector_size() - M.nr() == in_vector_size()
- M(i) == the mean of the ith input feature shown to train() - M(i) == the mean of the ith input feature shown to train()
or train_pca()
!*/ !*/
const matrix<scalar_type,0,1,mem_manager_type>& std_devs ( const matrix<scalar_type,0,1,mem_manager_type>& std_devs (
...@@ -264,21 +404,18 @@ namespace dlib ...@@ -264,21 +404,18 @@ namespace dlib
- SD.nc() == 1 - SD.nc() == 1
- SD.nr() == in_vector_size() - SD.nr() == in_vector_size()
- SD(i) == the reciprocal of the standard deviation of the ith - SD(i) == the reciprocal of the standard deviation of the ith
input feature shown to train() or train_pca() input feature shown to train()
!*/ !*/
const matrix<scalar_type,0,0,mem_manager_type>& pca_matrix ( const matrix<scalar_type,0,0,mem_manager_type>& pca_matrix (
) const; ) const;
/*! /*!
ensures ensures
- if (PCA is used in normalization) then - returns a matrix PCA such that:
- returns a matrix PCA such that: - PCA.nr() == out_vector_size()
- PCA.nr() == out_vector_size() - PCA.nc() == in_vector_size()
- PCA.nc() == in_vector_size() - PCA == the principal component analysis transformation
- PCA == the principal component analysis transformation matrix
matrix
- else
- returns an empty matrix object (i.e. it has size() == 0)
!*/ !*/
const matrix<scalar_type,0,1,mem_manager_type>& operator() ( const matrix<scalar_type,0,1,mem_manager_type>& operator() (
...@@ -295,14 +432,11 @@ namespace dlib ...@@ -295,14 +432,11 @@ namespace dlib
- Z.nc() == 1 - Z.nc() == 1
- the expected value of each element of Z is 0 - the expected value of each element of Z is 0
- the expected variance of each element of Z is 1 - the expected variance of each element of Z is 1
- if (pca_matrix().size() > 0) then - Z == pca_matrix()*pointwise_multiply(x-means(), std_devs());
- Z == pca_matrix()*pointwise_multiply(x-means(), std_devs());
- else
- Z == pointwise_multiply(x-means(), std_devs());
!*/ !*/
void swap ( void swap (
vector_normalizer& item vector_normalizer_pca& item
); );
/*! /*!
ensures ensures
...@@ -314,8 +448,8 @@ namespace dlib ...@@ -314,8 +448,8 @@ namespace dlib
typename matrix_type typename matrix_type
> >
inline void swap ( inline void swap (
vector_normalizer<matrix_type>& a, vector_normalizer_pca<matrix_type>& a,
vector_normalizer<matrix_type>& b vector_normalizer_pca<matrix_type>& b
) { a.swap(b); } ) { a.swap(b); }
/*! /*!
provides a global swap function provides a global swap function
...@@ -325,7 +459,7 @@ namespace dlib ...@@ -325,7 +459,7 @@ namespace dlib
typename matrix_type, typename matrix_type,
> >
void deserialize ( void deserialize (
vector_normalizer<matrix_type>& item, vector_normalizer_pca<matrix_type>& item,
std::istream& in std::istream& in
); );
/*! /*!
...@@ -336,7 +470,7 @@ namespace dlib ...@@ -336,7 +470,7 @@ namespace dlib
typename matrix_type, typename matrix_type,
> >
void serialize ( void serialize (
const vector_normalizer<matrix_type>& item, const vector_normalizer_pca<matrix_type>& item,
std::ostream& out std::ostream& out
); );
/*! /*!
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment