Commit 438ec254 authored by Davis King's avatar Davis King

Setup the LU decomposition code to use LAPACK when available. I also removed the older

version from numerical recipes and made everything depend on the lu_decomposition object
instead.  Finally, I added in a triangular solver that uses BLAS when available and made
the lu_decomposition object us it.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403833
parent 9de0a49c
#ifndef DLIB_CBLAS_CONSTAnTS_H__
#define DLIB_CBLAS_CONSTAnTS_H__
namespace dlib
{
namespace blas_bindings
{
enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
enum CBLAS_UPLO {CblasUpper=121, CblasLower=122};
enum CBLAS_DIAG {CblasNonUnit=131, CblasUnit=132};
enum CBLAS_SIDE {CblasLeft=141, CblasRight=142};
}
}
#endif // DLIB_CBLAS_CONSTAnTS_H__
// Copyright (C) 2010 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LAPACk_GETRF_H__
#define DLIB_LAPACk_GETRF_H__
......@@ -106,28 +108,16 @@ namespace dlib
>
int getrf (
matrix<T,NR1,NC1,MM,column_major_layout>& a,
matrix<long,NR2,NC2,MM,layout>& ipiv
matrix<integer,NR2,NC2,MM,layout>& ipiv
)
{
const long m = a.nr();
const long n = a.nc();
matrix<integer,NR2,NC2,MM,column_major_layout> ipiv_temp(std::min(m,n), 1);
ipiv.set_size(std::min(m,n), 1);
// compute the actual decomposition
int info = binding::getrf(m, n, &a(0,0), a.nr(), &ipiv_temp(0,0));
// Turn the P vector into a more useful form. This way we will have the identity
// a == rowm(L*U, ipiv). The permutation vector that comes out of LAPACK is somewhat
// different.
ipiv = trans(range(0, a.nr()-1));
for (long i = ipiv_temp.size()-1; i >= 0; --i)
{
// -1 because FORTRAN is indexed starting with 1 instead of 0
std::swap(ipiv(i), ipiv(ipiv_temp(i)-1));
}
return info;
return binding::getrf(m, n, &a(0,0), a.nr(), &ipiv(0,0));
}
// ------------------------------------------------------------------------------------
......
......@@ -9,6 +9,7 @@
#include "matrix_assign.h"
#include "matrix_conj_trans.h"
#include "cblas_constants.h"
//#include <iostream>
//using namespace std;
......@@ -41,9 +42,6 @@ namespace dlib
{
// Here we declare the prototypes for the CBLAS calls used by the BLAS bindings below
enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102};
enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113};
void cblas_sgemm(const enum CBLAS_ORDER Order, const enum CBLAS_TRANSPOSE TransA,
const enum CBLAS_TRANSPOSE TransB, const int M, const int N,
const int K, const float alpha, const float *A,
......
......@@ -393,166 +393,6 @@ namespace dlib
return true;
}
template <
typename T,
long N,
long NX,
typename MM1,
typename MM2,
typename MM3,
typename L1,
typename L2,
typename L3
>
bool ludcmp (
matrix<T,N,N,MM1,L1>& a,
matrix<long,N,NX,MM2,L2>& indx,
T& d,
matrix<T,N,NX,MM3,L3>& vv
)
/*!
( this function is derived from the one in numerical recipes in C chapter 2.3)
ensures
- #a == both the L and U matrices
- #indx == the permutation vector (see numerical recipes in C)
- #d == some other thing (see numerical recipes in C)
- #vv == some undefined value. this is just used for scratch space
- if (the matrix is singular and we can't do anything) then
- returns false
- else
- returns true
!*/
{
DLIB_ASSERT(indx.nc() == 1,"in dlib::nric::ludcmp() the indx matrix must be a column vector");
DLIB_ASSERT(vv.nc() == 1,"in dlib::nric::ludcmp() the vv matrix must be a column vector");
const long n = a.nr();
long imax = 0;
T big, dum, sum, temp;
d = 1.0;
for (long i = 0; i < n; ++i)
{
big = 0;
for (long j = 0; j < n; ++j)
{
if ((temp=std::abs(a(i,j))) > big)
big = temp;
}
if (big == 0.0)
{
return false;
}
vv(i) = 1/big;
}
for (long j = 0; j < n; ++j)
{
for (long i = 0; i < j; ++i)
{
sum = a(i,j);
for (long k = 0; k < i; ++k)
sum -= a(i,k)*a(k,j);
a(i,j) = sum;
}
big = 0;
for (long i = j; i < n; ++i)
{
sum = a(i,j);
for (long k = 0; k < j; ++k)
sum -= a(i,k)*a(k,j);
a(i,j) = sum;
if ( (dum=vv(i)*std::abs(sum)) >= big)
{
big = dum;
imax = i;
}
}
if (j != imax)
{
for (long k = 0; k < n; ++k)
{
dum = a(imax,k);
a(imax,k) = a(j,k);
a(j,k) = dum;
}
d = -d;
vv(imax) = vv(j);
}
indx(j) = imax;
if (j < n-1)
{
if (a(j,j) == 0)
return false;
dum = 1/a(j,j);
for (long i = j+1; i < n; ++i)
a(i,j) *= dum;
}
}
return true;
}
// ----------------------------------------------------------------------------------------
template <
typename T,
long N,
long NX,
typename MM1,
typename MM2,
typename MM3,
typename L1,
typename L2,
typename L3
>
void lubksb (
const matrix<T,N,N,MM1,L1>& a,
const matrix<long,N,NX,MM2,L2>& indx,
matrix<T,N,NX,MM3,L3>& b
)
/*!
( this function is derived from the one in numerical recipes in C chapter 2.3)
requires
- a == the LU decomposition you get from ludcmp()
- indx == the indx term you get out of ludcmp()
- b == the right hand side vector from the expression a*x = b
ensures
- #b == the solution vector x from the expression a*x = b
(basically, this function solves for x given b and a)
!*/
{
DLIB_ASSERT(indx.nc() == 1,"in dlib::nric::lubksb() the indx matrix must be a column vector");
DLIB_ASSERT(b.nc() == 1,"in dlib::nric::lubksb() the b matrix must be a column vector");
const long n = a.nr();
long i, ii = -1, ip, j;
T sum;
for (i = 0; i < n; ++i)
{
ip = indx(i);
sum=b(ip);
b(ip) = b(i);
if (ii != -1)
{
for (j = ii; j < i; ++j)
sum -= a(i,j)*b(j);
}
else if (sum)
{
ii = i;
}
b(i) = sum;
}
for (i = n-1; i >= 0; --i)
{
sum = b(i);
for (j = i+1; j < n; ++j)
sum -= a(i,j)*b(j);
b(i) = sum/a(i,i);
}
}
// ------------------------------------------------------------------------------------
}
......@@ -1001,31 +841,8 @@ convergence:
);
typedef typename matrix_exp<EXP>::type type;
matrix<type, N, N,MM> a(m), y(m.nr(),m.nr());
matrix<long,N,1,MM> indx(m.nr(),1);
matrix<type,N,1,MM> col(m.nr(),1);
matrix<type,N,1,MM> vv(m.nr(),1);
type d;
long i, j;
if (ludcmp(a,indx,d,vv))
{
for (j = 0; j < m.nr(); ++j)
{
for (i = 0; i < m.nr(); ++i)
col(i) = 0;
col(j) = 1;
lubksb(a,indx,col);
for (i = 0; i < m.nr(); ++i)
y(i,j) = col(i);
}
}
else
{
// m is singular so lets just set y equal to m just so that
// it has some value
y = m;
}
return y;
lu_decomposition<EXP> lu(m);
return lu.solve(identity_matrix<type>(m.nr()));
}
};
......@@ -1502,17 +1319,7 @@ convergence:
typedef typename matrix_exp<EXP>::type type;
typedef typename matrix_exp<EXP>::mem_manager_type MM;
matrix<type, N, N,MM> lu(m);
matrix<long,N,1,MM> indx(m.nr(),1);
matrix<type,N,1,MM> vv(m.nr(),1);
type d;
if (ludcmp(lu,indx,d,vv) == false)
{
// the matrix is singular so its det is 0
return 0;
}
return prod(diag(lu))*d;
return lu_decomposition<EXP>(m).det();
}
};
......
......@@ -255,6 +255,9 @@ namespace dlib
LU decomposition is in the solution of square systems of simultaneous
linear equations. This will fail if is_singular() returns true (or
if A is very nearly singular).
If DLIB_USE_LAPACK is defined then the LAPACK routine xGETRF
is used to compute the LU decomposition.
!*/
public:
......
......@@ -8,8 +8,14 @@
#include "matrix.h"
#include "matrix_utilities.h"
#include "matrix_subexp.h"
#include "matrix_trsm.h"
#include <algorithm>
#ifdef DLIB_USE_LAPACK
#include "lapack/getrf.h"
#endif
namespace dlib
{
......@@ -72,7 +78,7 @@ namespace dlib
private:
/* Array for internal storage of decomposition. */
matrix_type LU;
matrix<type,0,0,mem_manager_type,column_major_layout> LU;
long m, n, pivsign;
pivot_column_vector_type piv;
......@@ -108,6 +114,28 @@ namespace dlib
<< "\n\tthis: " << this
);
#ifdef DLIB_USE_LAPACK
matrix<lapack::integer,0,1,mem_manager_type,layout_type> piv_temp;
lapack::getrf(LU, piv_temp);
pivsign = 1;
// Turn the piv_temp vector into a more useful form. This way we will have the identity
// rowm(A,piv) == L*U. The permutation vector that comes out of LAPACK is somewhat
// different.
piv = trans(range(0,m-1));
for (long i = 0; i < piv_temp.size(); ++i)
{
// -1 because FORTRAN is indexed starting with 1 instead of 0
if (piv(piv_temp(i)-1) != piv(i))
{
std::swap(piv(i), piv(piv_temp(i)-1));
pivsign = -pivsign;
}
}
#else
// Use a "left-looking", dot-product, Crout/Doolittle algorithm.
......@@ -170,6 +198,8 @@ namespace dlib
}
}
}
#endif
}
// ----------------------------------------------------------------------------------------
......@@ -311,67 +341,15 @@ namespace dlib
<< "\n\tthis: " << this
);
const long nx = B.nc();
// if there are multiple columns in B
if (nx > 1)
{
// Copy right hand side with pivoting
matrix_type X(rowm(B, piv));
// Copy right hand side with pivoting
matrix<type,0,0,mem_manager_type,column_major_layout> X(rowm(B, piv));
// Solve L*Y = B(piv,:)
for (long k = 0; k < n; k++)
{
for (long i = k+1; i < n; i++)
{
for (long j = 0; j < nx; j++)
{
X(i,j) -= X(k,j)*LU(i,k);
}
}
}
// Solve U*X = Y;
for (long k = n-1; k >= 0; k--)
{
for (long j = 0; j < nx; j++)
{
X(k,j) /= LU(k,k);
}
for (long i = 0; i < k; i++)
{
for (long j = 0; j < nx; j++)
{
X(i,j) -= X(k,j)*LU(i,k);
}
}
}
return X;
}
else
{
column_vector_type x(rowm(B, piv));
// Solve L*Y = B(piv)
for (long k = 0; k < n; k++)
{
for (long i = k+1; i < n; i++)
{
x(i) -= x(k)*LU(i,k);
}
}
// Solve U*X = Y;
for (long k = n-1; k >= 0; k--)
{
x(k) /= LU(k,k);
for (long i = 0; i < k; i++)
x(i) -= x(k)*LU(i,k);
}
return x;
}
using namespace blas_bindings;
// Solve L*Y = B(piv,:)
triangular_solver(CblasLeft, CblasLower, CblasNoTrans, CblasUnit, LU, X);
// Solve U*X = Y;
triangular_solver(CblasLeft, CblasUpper, CblasNoTrans, CblasNonUnit, LU, X);
return X;
}
// ----------------------------------------------------------------------------------------
......
This diff is collapsed.
......@@ -25,6 +25,8 @@ namespace
logger dlog("test.matrix2");
dlib::rand::float_1a rnd;
void matrix_test (
)
/*!
......@@ -370,16 +372,11 @@ namespace
matrix<double, 7, 7,MM,column_major_layout> m7;
matrix<double> dm7(7,7);
for (long r= 0; r< dm7.nr(); ++r)
{
for (long c = 0; c < dm7.nc(); ++c)
{
dm7(r,c) = r*c/3.3;
}
}
dm7 = randm(7,7, rnd);
m7 = dm7;
DLIB_TEST(inv(dm7) == inv(m7));
DLIB_TEST_MSG(max(abs(dm7*inv(dm7) - identity_matrix<double>(7))) < 1e-12, max(abs(dm7*inv(dm7) - identity_matrix<double>(7))));
DLIB_TEST(equal(inv(dm7), inv(m7)));
DLIB_TEST(det(dm7) == det(m7));
DLIB_TEST(min(dm7) == min(m7));
DLIB_TEST(max(dm7) == max(m7));
......
......@@ -110,6 +110,17 @@ namespace
DLIB_TEST(max(abs(test.get_imag_eigenvalues())) < eps);
DLIB_TEST(diagm(diag(D)) == D);
// only check the determinant against the eigenvalues for small matrices
// because for huge ones the determinant might be so big it overflows a floating point number.
if (m.nr() < 50)
{
const type mdet = det(m);
DLIB_TEST_MSG(std::abs(prod(test.get_real_eigenvalues()) - mdet) < std::abs(mdet)*sqrt(std::numeric_limits<type>::epsilon()),
std::abs(prod(test.get_real_eigenvalues()) - mdet) <<" eps: " << std::abs(mdet)*sqrt(std::numeric_limits<type>::epsilon())
<< " mdet: "<< mdet << " prod(eig): " << prod(test.get_real_eigenvalues())
);
}
// V is orthogonal
DLIB_TEST(equal(V*trans(V), identity_matrix<type>(test.dim()), eps));
DLIB_TEST(equal(m , V*D*trans(V), eps));
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment