Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
43d9768e
Commit
43d9768e
authored
Dec 27, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added unit tests for rank_unlabeled_training_samples()
parent
b5e8d9d8
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
168 additions
and
1 deletion
+168
-1
active_learning.h
dlib/svm/active_learning.h
+1
-1
CMakeLists.txt
dlib/test/CMakeLists.txt
+1
-0
active_learning.cpp
dlib/test/active_learning.cpp
+165
-0
makefile
dlib/test/makefile
+1
-0
No files found.
dlib/svm/active_learning.h
View file @
43d9768e
...
...
@@ -78,7 +78,7 @@ namespace dlib
temp_labels
.
resize
(
temp_labels
.
size
()
+
1
);
for
(
unsigned
long
i
=
0
;
i
<
unlabeled_samples
.
size
();
++
i
)
for
(
long
i
=
0
;
i
<
unlabeled_samples
.
size
();
++
i
)
{
temp_samples
.
back
()
=
unlabeled_samples
(
i
);
// figure out the margin for each possible labeling of this sample.
...
...
dlib/test/CMakeLists.txt
View file @
43d9768e
...
...
@@ -9,6 +9,7 @@ cmake_minimum_required(VERSION 2.6)
# into the regression test suite.
set
(
tests
example.cpp
active_learning.cpp
any.cpp
any_function.cpp
array2d.cpp
...
...
dlib/test/active_learning.cpp
0 → 100644
View file @
43d9768e
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/svm.h>
#include "tester.h"
namespace
{
using
namespace
test
;
using
namespace
dlib
;
using
namespace
std
;
logger
dlog
(
"test.active_learning"
);
// ----------------------------------------------------------------------------------------
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
typedef
radial_basis_kernel
<
sample_type
>
kernel_type
;
// ----------------------------------------------------------------------------------------
void
make_dataset
(
std
::
vector
<
sample_type
>&
samples
,
std
::
vector
<
double
>&
labels
)
{
for
(
int
r
=
-
10
;
r
<=
10
;
++
r
)
{
for
(
int
c
=
-
10
;
c
<=
10
;
++
c
)
{
sample_type
samp
(
2
);
samp
(
0
)
=
r
;
samp
(
1
)
=
c
;
samples
.
push_back
(
samp
);
// if this point is less than 10 from the origin
if
(
sqrt
((
double
)
r
*
r
+
c
*
c
)
<=
8
)
labels
.
push_back
(
+
1
);
else
labels
.
push_back
(
-
1
);
}
}
vector_normalizer
<
sample_type
>
normalizer
;
normalizer
.
train
(
samples
);
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
samples
[
i
]
=
normalizer
(
samples
[
i
]);
randomize_samples
(
samples
,
labels
);
/*
cout << "samples.size(): " << samples.size() << endl;
cout << "num +1 samples: "<< sum(mat(labels) > 0) << endl;
cout << "num -1 samples: "<< sum(mat(labels) < 0) << endl;
*/
empirical_kernel_map
<
kernel_type
>
ekm
;
ekm
.
load
(
kernel_type
(
0.15
),
samples
);
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
samples
[
i
]
=
ekm
.
project
(
samples
[
i
]);
//cout << "dims: "<< ekm.out_vector_size() << endl;
}
// ----------------------------------------------------------------------------------------
double
test_rank_unlabeled_training_samples
(
const
std
::
vector
<
sample_type
>&
samples
,
const
std
::
vector
<
double
>&
labels
,
active_learning_mode
mode
,
int
iterations
,
bool
pick_front
)
{
matrix
<
double
,
2
,
1
>
s
;
s
=
sum
(
mat
(
labels
)
>
0
),
sum
(
mat
(
labels
)
<
0
);
s
/=
labels
.
size
();
svm_c_linear_dcd_trainer
<
linear_kernel
<
sample_type
>
>
trainer
;
trainer
.
set_c
(
25
);
const
unsigned
long
initial_size
=
1
;
std
::
vector
<
sample_type
>
tsamples
(
samples
.
begin
(),
samples
.
begin
()
+
initial_size
);
std
::
vector
<
double
>
tlabels
(
labels
.
begin
(),
labels
.
begin
()
+
initial_size
);
decision_function
<
linear_kernel
<
sample_type
>
>
df
;
double
random_score
=
0
;
double
active_learning_score
=
0
;
for
(
int
i
=
0
;
i
<
iterations
;
++
i
)
{
print_spinner
();
random_subset_selector
<
sample_type
>
sss
=
randomly_subsample
(
samples
,
50
,
i
);
random_subset_selector
<
double
>
ssl
=
randomly_subsample
(
labels
,
50
,
i
);
std
::
vector
<
unsigned
long
>
results
;
results
=
rank_unlabeled_training_samples
(
trainer
,
tsamples
,
tlabels
,
sss
,
mode
);
const
unsigned
long
idx
=
pick_front
?
results
.
front
()
:
results
.
back
();
tsamples
.
push_back
(
sss
[
idx
]);
tlabels
.
push_back
(
ssl
[
idx
]);
df
=
trainer
.
train
(
tsamples
,
tlabels
);
//cout << "tsamples.size(): " << tsamples.size() << endl;
const
unsigned
long
num
=
tsamples
.
size
();
const
double
active
=
test_binary_decision_function
(
df
,
samples
,
labels
)
*
s
;
//cout << "test: "<< active;
df
=
trainer
.
train
(
randomly_subsample
(
samples
,
num
,
i
),
randomly_subsample
(
labels
,
num
,
i
));
const
double
random
=
test_binary_decision_function
(
df
,
samples
,
labels
)
*
s
;
//cout << "test: "<< random << endl;
active_learning_score
+=
active
;
random_score
+=
random
;
//cout << "\n\n***********\n\n" << flush;
}
dlog
<<
LINFO
<<
"pick_front: "
<<
pick_front
<<
" mode: "
<<
mode
;
dlog
<<
LINFO
<<
"active_learning_score: "
<<
active_learning_score
;
dlog
<<
LINFO
<<
"random_score: "
<<
random_score
;
return
active_learning_score
/
random_score
;
}
// ----------------------------------------------------------------------------------------
class
test_active_learning
:
public
tester
{
public
:
test_active_learning
(
)
:
tester
(
"test_active_learning"
,
"Runs tests on the active learning components."
)
{}
void
perform_test
(
)
{
std
::
vector
<
sample_type
>
samples
;
std
::
vector
<
double
>
labels
;
print_spinner
();
make_dataset
(
samples
,
labels
);
dlog
<<
LINFO
<<
"samples.size(): "
<<
samples
.
size
();
// When we pick the best/front ranked element then the active learning method
// should do at least as well as random selection.
DLIB_TEST
(
test_rank_unlabeled_training_samples
(
samples
,
labels
,
max_min_margin
,
30
,
true
)
>=
1
);
DLIB_TEST
(
test_rank_unlabeled_training_samples
(
samples
,
labels
,
ratio_margin
,
30
,
true
)
>=
1
);
// However, picking the worst ranked element should do way worse than random
// selection.
DLIB_TEST
(
test_rank_unlabeled_training_samples
(
samples
,
labels
,
max_min_margin
,
30
,
false
)
<
1
);
DLIB_TEST
(
test_rank_unlabeled_training_samples
(
samples
,
labels
,
ratio_margin
,
30
,
false
)
<
1
);
}
}
a
;
}
dlib/test/makefile
View file @
43d9768e
...
...
@@ -25,6 +25,7 @@ SRC += ../all/source.cpp
SRC
+=
example.cpp
SRC
+=
example_args.cpp
SRC
+=
active_learning.cpp
SRC
+=
any.cpp
SRC
+=
any_function.cpp
SRC
+=
array2d.cpp
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment