Commit 48444811 authored by Davis King's avatar Davis King

updated docs

parent 986273f2
...@@ -111,6 +111,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09 ...@@ -111,6 +111,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>pick_initial_centers</item> <item>pick_initial_centers</item>
<item>kkmeans</item> <item>kkmeans</item>
<item>find_clusters_using_kmeans</item> <item>find_clusters_using_kmeans</item>
<item>find_clusters_using_angular_kmeans</item>
<item>nearest_center</item> <item>nearest_center</item>
<item>newman_cluster</item> <item>newman_cluster</item>
<item>spectral_cluster</item> <item>spectral_cluster</item>
...@@ -357,7 +358,23 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09 ...@@ -357,7 +358,23 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<file>dlib/clustering.h</file> <file>dlib/clustering.h</file>
<spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file> <spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
<description> <description>
This is just a simple linear kmeans clustering implementation. This is a simple linear kmeans clustering implementation.
It uses Euclidean distance to compare samples.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>find_clusters_using_angular_kmeans</name>
<file>dlib/clustering.h</file>
<spec_file link="true">dlib/svm/kkmeans_abstract.h</spec_file>
<description>
This is a simple linear kmeans clustering implementation.
To compare a sample to a cluster, it measures the angle between them
with respect to the origin. Therefore, it tries to find clusters
of points that all have small angles between each cluster member.
</description> </description>
</component> </component>
......
...@@ -424,6 +424,7 @@ ...@@ -424,6 +424,7 @@
<term file="dlib/statistics/dpca_abstract.h.html" name="discriminant_pca_error" include="dlib/statistics.h"/> <term file="dlib/statistics/dpca_abstract.h.html" name="discriminant_pca_error" include="dlib/statistics.h"/>
<term file="ml.html" name="kkmeans" include="dlib/clustering.h"/> <term file="ml.html" name="kkmeans" include="dlib/clustering.h"/>
<term file="ml.html" name="find_clusters_using_kmeans" include="dlib/clustering.h"/> <term file="ml.html" name="find_clusters_using_kmeans" include="dlib/clustering.h"/>
<term file="ml.html" name="find_clusters_using_angular_kmeans" include="dlib/clustering.h"/>
<term file="ml.html" name="nearest_center" include="dlib/clustering.h"/> <term file="ml.html" name="nearest_center" include="dlib/clustering.h"/>
<term file="ml.html" name="newman_cluster" include="dlib/clustering.h"/> <term file="ml.html" name="newman_cluster" include="dlib/clustering.h"/>
<term file="ml.html" name="spectral_cluster" include="dlib/clustering.h"/> <term file="ml.html" name="spectral_cluster" include="dlib/clustering.h"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment