Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
48444811
Commit
48444811
authored
Jul 01, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
updated docs
parent
986273f2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
19 additions
and
1 deletion
+19
-1
ml.xml
docs/docs/ml.xml
+18
-1
term_index.xml
docs/docs/term_index.xml
+1
-0
No files found.
docs/docs/ml.xml
View file @
48444811
...
...
@@ -111,6 +111,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
pick_initial_centers
</item>
<item>
kkmeans
</item>
<item>
find_clusters_using_kmeans
</item>
<item>
find_clusters_using_angular_kmeans
</item>
<item>
nearest_center
</item>
<item>
newman_cluster
</item>
<item>
spectral_cluster
</item>
...
...
@@ -357,7 +358,23 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
This is just a simple linear kmeans clustering implementation.
This is a simple linear kmeans clustering implementation.
It uses Euclidean distance to compare samples.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>
find_clusters_using_angular_kmeans
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/svm/kkmeans_abstract.h
</spec_file>
<description>
This is a simple linear kmeans clustering implementation.
To compare a sample to a cluster, it measures the angle between them
with respect to the origin. Therefore, it tries to find clusters
of points that all have small angles between each cluster member.
</description>
</component>
...
...
docs/docs/term_index.xml
View file @
48444811
...
...
@@ -424,6 +424,7 @@
<term
file=
"dlib/statistics/dpca_abstract.h.html"
name=
"discriminant_pca_error"
include=
"dlib/statistics.h"
/>
<term
file=
"ml.html"
name=
"kkmeans"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"find_clusters_using_kmeans"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"find_clusters_using_angular_kmeans"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"nearest_center"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"newman_cluster"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"spectral_cluster"
include=
"dlib/clustering.h"
/>
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment