Commit 4d121e7e authored by Davis King's avatar Davis King

Added another metric learning example

parent 29047a22
......@@ -47,6 +47,7 @@ if (NOT USING_OLD_VISUAL_STUDIO_COMPILER)
add_example(dnn_introduction2_ex)
add_example(dnn_inception_ex)
add_example(dnn_metric_learning_ex)
add_example(dnn_metric_learning_on_images_ex)
add_gui_example(dnn_imagenet_ex)
add_gui_example(dnn_mmod_ex)
add_gui_example(dnn_mmod_face_detection_ex)
......
......@@ -47,12 +47,14 @@ int main() try
trainer.train(samples, labels);
auto embedded = net(samples);
// Run all the images through the network to get their vector embeddings.
std::vector<matrix<float,0,1>> embedded = net(images);
for (size_t i = 0; i < embedded.size(); ++i)
cout << "label: " << labels[i] << "\t" << trans(embedded[i]);
// now count how many pairs are correctly classified.
// Now, check if the embedding puts things with the same labels near each other and
// things with different labels far apart.
int num_right = 0;
int num_wrong = 0;
for (size_t i = 0; i < embedded.size(); ++i)
......@@ -61,6 +63,9 @@ int main() try
{
if (labels[i] == labels[j])
{
// The loss_metric layer will cause things with the same label to be less
// than net.loss_details().get_distance_threshold() distance from each
// other. So we can use that distance value as our testing threshold.
if (length(embedded[i]-embedded[j]) < net.loss_details().get_distance_threshold())
++num_right;
else
......@@ -68,10 +73,10 @@ int main() try
}
else
{
if (length(embedded[i]-embedded[j]) < net.loss_details().get_distance_threshold())
++num_wrong;
else
if (length(embedded[i]-embedded[j]) >= net.loss_details().get_distance_threshold())
++num_right;
else
++num_wrong;
}
}
}
......
#include <dlib/dnn.h>
#include <dlib/image_io.h>
#include <dlib/misc_api.h>
using namespace dlib;
using namespace std;
std::vector<std::vector<string>> load_objects_list (
const string& dir
)
{
std::vector<std::vector<string>> objects;
for (auto subdir : directory(dir).get_dirs())
{
std::vector<string> imgs;
for (auto img : subdir.get_files())
imgs.push_back(img);
objects.push_back(imgs);
}
return objects;
}
void load_mini_batch (
const size_t num_ids,
const size_t samples_per_id,
dlib::rand& rnd,
const std::vector<std::vector<string>>& objs,
std::vector<matrix<rgb_pixel>>& images,
std::vector<unsigned long>& labels
)
{
images.clear();
labels.clear();
matrix<rgb_pixel> image;
for (size_t i = 0; i < num_ids; ++i)
{
const size_t id = rnd.get_random_32bit_number()%objs.size();
for (size_t j = 0; j < samples_per_id; ++j)
{
const auto& obj = objs[id][rnd.get_random_32bit_number()%objs[id].size()];
load_image(image, obj);
images.push_back(std::move(image));
labels.push_back(id);
}
}
// You might want to do some data augmentation at this point. Here we so some simple
// color augmentation.
for (auto&& crop : images)
disturb_colors(crop,rnd);
// All the images going into a mini-batch have to be the same size. And really, all
// the images in your entire training dataset should be the same size for what we are
// doing to make the most sense.
DLIB_CASSERT(images.size() > 0);
for (auto&& img : images)
{
DLIB_CASSERT(img.nr() == images[0].nr() && img.nc() == images[0].nc(),
"All the images in a single mini-batch must be the same size.");
}
}
// ----------------------------------------------------------------------------------------
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
template <int N, typename SUBNET> using res = relu<residual<block,N,bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
template <int N, typename SUBNET> using res_down = relu<residual_down<block,N,bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
// ----------------------------------------------------------------------------------------
template <typename SUBNET> using level1 = res<512,res<512,res_down<512,SUBNET>>>;
template <typename SUBNET> using level2 = res<256,res<256,res<256,res<256,res<256,res_down<256,SUBNET>>>>>>;
template <typename SUBNET> using level3 = res<128,res<128,res<128,res_down<128,SUBNET>>>>;
template <typename SUBNET> using level4 = res<64,res<64,res<64,SUBNET>>>;
template <typename SUBNET> using alevel1 = ares<512,ares<512,ares_down<512,SUBNET>>>;
template <typename SUBNET> using alevel2 = ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,SUBNET>>>>>>;
template <typename SUBNET> using alevel3 = ares<128,ares<128,ares<128,ares_down<128,SUBNET>>>>;
template <typename SUBNET> using alevel4 = ares<64,ares<64,ares<64,SUBNET>>>;
template <typename SUBNET> using final_pooling = avg_pool_everything<SUBNET>;
template <typename SUBNET> using afinal_pooling = avg_pool_everything<SUBNET>;
// training network type
using net_type = loss_metric<fc_no_bias<128,final_pooling<
level1<
level2<
level3<
level4<
max_pool<3,3,2,2,relu<bn_con<con<64,7,7,2,2,
input_rgb_image
>>>>>>>>>>>;
// testing network type (replaced batch normalization with fixed affine transforms)
using anet_type = loss_metric<fc_no_bias<128,afinal_pooling<
alevel1<
alevel2<
alevel3<
alevel4<
max_pool<3,3,2,2,relu<affine<con<64,7,7,2,2,
input_rgb_image
>>>>>>>>>>>;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv)
{
if (argc != 2)
{
cout << "Give folder as input. It should contain sub-folders of images and we will " << endl;
cout << "learn to distinguish these sub-folders with metric learning." << endl;
return 1;
}
auto objs = load_objects_list(argv[1]);
cout << "objs.size(): "<< objs.size() << endl;
std::vector<matrix<rgb_pixel>> images;
std::vector<unsigned long> labels;
net_type net;
dnn_trainer<net_type> trainer(net, sgd(0.0005, 0.9));
trainer.set_learning_rate(0.1);
trainer.be_verbose();
trainer.set_synchronization_file("face_metric_sync", std::chrono::minutes(5));
trainer.set_iterations_without_progress_threshold(300);
// It's important to feed the GPU fast enough to keep it occupied. So here we create a
// bunch of threads that are responsible for creating mini-batches of training data.
dlib::pipe<std::vector<matrix<rgb_pixel>>> qimages(4);
dlib::pipe<std::vector<unsigned long>> qlabels(4);
auto data_loader = [&qimages, &qlabels, &objs](time_t seed)
{
dlib::rand rnd(time(0)+seed);
std::vector<matrix<rgb_pixel>> images;
std::vector<unsigned long> labels;
while(qimages.is_enabled())
{
try
{
load_mini_batch(15,15,rnd, objs, images, labels);
qimages.enqueue(images);
qlabels.enqueue(labels);
}
catch(std::exception& e)
{
cout << "EXCEPTION IN LOADING DATA" << endl;
cout << e.what() << endl;
}
}
};
std::thread data_loader1([data_loader](){ data_loader(1); });
std::thread data_loader2([data_loader](){ data_loader(2); });
std::thread data_loader3([data_loader](){ data_loader(3); });
std::thread data_loader4([data_loader](){ data_loader(4); });
std::thread data_loader5([data_loader](){ data_loader(5); });
// Here we do the training. We keep passing mini-batches to the trainer until the
// learning rate has dropped low enough.
while(trainer.get_learning_rate() >= 1e-4)
{
qimages.dequeue(images);
qlabels.dequeue(labels);
trainer.train_one_step(images, labels);
}
// wait for training threads to stop
trainer.get_net();
cout << "done training" << endl;
// Save the network to disk
net.clean();
serialize("metric_network_renset.dat") << net;
// stop all the data loading threads and wait for them to terminate.
qimages.disable();
qlabels.disable();
data_loader1.join();
data_loader2.join();
data_loader3.join();
data_loader4.join();
data_loader5.join();
// Now, just to show an example of how you would use the network, lets check how well
// it performs on the training data.
dlib::rand rnd(time(0));
load_mini_batch(15,15,rnd, objs, images, labels);
// Run all the images through the network to get their vector embeddings.
std::vector<matrix<float,0,1>> embedded = net(images);
// Now, check if the embedding puts things with the same labels near each other and
// things with different labels far apart.
int num_right = 0;
int num_wrong = 0;
for (size_t i = 0; i < embedded.size(); ++i)
{
for (size_t j = i+1; j < embedded.size(); ++j)
{
if (labels[i] == labels[j])
{
// The loss_metric layer will cause things with the same label to be less
// than net.loss_details().get_distance_threshold() distance from each
// other. So we can use that distance value as our testing threshold.
if (length(embedded[i]-embedded[j]) < net.loss_details().get_distance_threshold())
++num_right;
else
++num_wrong;
}
else
{
if (length(embedded[i]-embedded[j]) >= net.loss_details().get_distance_threshold())
++num_right;
else
++num_wrong;
}
}
}
cout << "num_right: "<< num_right << endl;
cout << "num_wrong: "<< num_wrong << endl;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment