Commit 4f352310 authored by Davis King's avatar Davis King

updated docs

parent 34bcf012
......@@ -125,9 +125,10 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>cca</item>
</section>
<section>
<name>Semi-Supervised</name>
<name>Semi-Supervised/Metric Learning</name>
<item>linear_manifold_regularizer</item>
<item>discriminant_pca</item>
<item>vector_normalizer_frobmetric</item>
</section>
<section>
<name>Feature Selection</name>
......@@ -576,6 +577,30 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<!-- ************************************************************************* -->
<component>
<name>vector_normalizer_frobmetric</name>
<file>dlib/statistics.h</file>
<spec_file link="true">dlib/statistics/vector_normalizer_frobmetric_abstract.h</spec_file>
<description>
This object is a tool for performing the FrobMetric distance metric
learning algorithm described in the following paper:
<blockquote>
A Scalable Dual Approach to Semidefinite Metric Learning
By Chunhua Shen, Junae Kim, Lei Wang, in CVPR 2011
</blockquote>
Therefore, this object is a tool that takes as input training triplets
(anchor, near, far) of vectors and attempts to learn a linear
transformation T such that:
<blockquote> <tt>length(T*anchor-T*near) + 1 &lt; length(T*anchor - T*far)</tt> </blockquote>
That is, you give a bunch of anchor vectors and for each anchor vector you
specify some vectors which should be near to it and some that should be far
form it. This object then tries to find a transformation matrix that makes
the "near" vectors close to their anchors while the "far" vectors are
farther away.
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>discriminant_pca</name>
......
......@@ -382,6 +382,8 @@
<term file="ml.html" name="sort_basis_vectors" include="dlib/svm.h"/>
<term file="ml.html" name="rank_unlabeled_training_samples" include="dlib/svm.h"/>
<term file="ml.html" name="vector_normalizer" include="dlib/statistics.h"/>
<term file="ml.html" name="vector_normalizer_frobmetric" include="dlib/statistics.h"/>
<term file="ml.html" name="frobmetric_training_sample" include="dlib/statistics.h"/>
<term file="ml.html" name="vector_normalizer_pca" include="dlib/statistics.h"/>
<term file="ml.html" name="discriminant_pca" include="dlib/statistics.h"/>
<term file="ml.html" name="sammon_projection" include="dlib/statistics.h"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment