Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
50012d2c
Commit
50012d2c
authored
Sep 24, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Plain Diff
merged
parents
28da9a42
3e559e42
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
127 additions
and
9 deletions
+127
-9
optimization.h
dlib/optimization/optimization.h
+27
-2
optimization_line_search.h
dlib/optimization/optimization_line_search.h
+78
-7
optimization_line_search_abstract.h
dlib/optimization/optimization_line_search_abstract.h
+22
-0
No files found.
dlib/optimization/optimization.h
View file @
50012d2c
...
...
@@ -456,6 +456,11 @@ namespace dlib
const
matrix_exp
<
EXP2
>&
x_upper
)
{
/*
The implementation of this function is more or less based on the discussion in
the paper Projected Newton-type Methods in Machine Learning by Mark Schmidt, et al.
*/
// make sure the requires clause is not violated
COMPILE_TIME_ASSERT
(
is_matrix
<
T
>::
value
);
DLIB_ASSERT
(
...
...
@@ -490,6 +495,7 @@ namespace dlib
// active constraint.
const
double
gap_eps
=
1e-8
;
double
last_alpha
=
1
;
while
(
stop_strategy
.
should_continue_search
(
x
,
f_value
,
g
))
{
s
=
search_strategy
.
get_next_direction
(
x
,
f_value
,
zero_bounded_variables
(
gap_eps
,
g
,
x
,
g
,
x_lower
,
x_upper
));
...
...
@@ -499,10 +505,19 @@ namespace dlib
make_line_search_function
(
clamp_function
(
f
,
x_lower
,
x_upper
),
x
,
s
,
f_value
),
f_value
,
dot
(
g
,
s
),
// compute gradient for the line search
1
,
last_alpha
,
search_strategy
.
get_wolfe_rho
(),
search_strategy
.
get_max_line_search_iterations
());
// Do a trust region style thing for alpha. The idea is that if we take a
// small step then we are likely to take another small step. So we reuse the
// alpha from the last iteration unless the line search didn't shrink alpha at
// all, in that case, we start with a bigger alpha next time.
if
(
alpha
==
last_alpha
)
last_alpha
=
std
::
min
(
last_alpha
*
10
,
1
.
0
);
else
last_alpha
=
alpha
;
// Take the search step indicated by the above line search
x
=
clamp
(
x
+
alpha
*
s
,
x_lower
,
x_upper
);
g
=
der
(
x
);
...
...
@@ -601,6 +616,7 @@ namespace dlib
// active constraint.
const
double
gap_eps
=
1e-8
;
double
last_alpha
=
1
;
while
(
stop_strategy
.
should_continue_search
(
x
,
f_value
,
g
))
{
s
=
search_strategy
.
get_next_direction
(
x
,
f_value
,
zero_bounded_variables
(
gap_eps
,
g
,
x
,
g
,
x_lower
,
x_upper
));
...
...
@@ -610,10 +626,19 @@ namespace dlib
negate_function
(
make_line_search_function
(
clamp_function
(
f
,
x_lower
,
x_upper
),
x
,
s
,
f_value
)),
f_value
,
dot
(
g
,
s
),
// compute gradient for the line search
1
,
last_alpha
,
search_strategy
.
get_wolfe_rho
(),
search_strategy
.
get_max_line_search_iterations
());
// Do a trust region style thing for alpha. The idea is that if we take a
// small step then we are likely to take another small step. So we reuse the
// alpha from the last iteration unless the line search didn't shrink alpha at
// all, in that case, we start with a bigger alpha next time.
if
(
alpha
==
last_alpha
)
last_alpha
=
std
::
min
(
last_alpha
*
10
,
1
.
0
);
else
last_alpha
=
alpha
;
// Take the search step indicated by the above line search
x
=
clamp
(
x
+
alpha
*
s
,
x_lower
,
x_upper
);
g
=
-
der
(
x
);
...
...
dlib/optimization/optimization_line_search.h
View file @
50012d2c
...
...
@@ -183,6 +183,57 @@ namespace dlib
return
put_in_range
(
0
,
1
,
alpha
);
}
// ----------------------------------------------------------------------------------------
inline
double
poly_min_extrap
(
double
f0
,
double
d0
,
double
x1
,
double
f_x1
,
double
x2
,
double
f_x2
)
{
DLIB_ASSERT
(
0
<
x1
&&
x1
<
x2
,
"Invalid inputs were given to this function"
);
// The contents of this function follow the equations described on page 58 of the
// book Numerical Optimization by Nocedal and Wright, second edition.
matrix
<
double
,
2
,
2
>
m
;
matrix
<
double
,
2
,
1
>
v
;
const
double
aa2
=
x2
*
x2
;
const
double
aa1
=
x1
*
x1
;
m
=
aa2
,
-
aa1
,
-
aa2
*
x2
,
aa1
*
x1
;
v
=
f_x1
-
f0
-
d0
*
x1
,
f_x2
-
f0
-
d0
*
x2
;
double
temp
=
aa2
*
aa1
*
(
x1
-
x2
);
// just take a guess if this happens
if
(
temp
==
0
)
{
return
x1
/
2
.
0
;
}
matrix
<
double
,
2
,
1
>
temp2
;
temp2
=
m
*
v
/
temp
;
const
double
a
=
temp2
(
0
);
const
double
b
=
temp2
(
1
);
temp
=
b
*
b
-
3
*
a
*
d0
;
if
(
temp
<
0
||
a
==
0
)
{
// This is probably a line so just pick the lowest point
if
(
f0
<
f_x2
)
return
0
;
else
return
x2
;
}
temp
=
(
-
b
+
std
::
sqrt
(
temp
))
/
(
3
*
a
);
return
put_in_range
(
0
,
x2
,
temp
);
}
// ----------------------------------------------------------------------------------------
inline
double
lagrange_poly_min_extrap
(
...
...
@@ -447,11 +498,17 @@ namespace dlib
<<
"
\n\t
max_iter: "
<<
max_iter
);
// If the gradient is telling us we need to search backwards then that is what we
// will do.
if
(
d0
>
0
&&
alpha
>
0
)
// make sure alpha is going in the right direction. That is, it should be opposite
// the direction of the gradient.
if
((
d0
>
0
&&
alpha
>
0
)
||
(
d0
<
0
&&
alpha
<
0
))
{
alpha
*=
-
1
;
}
bool
have_prev_alpha
=
false
;
double
prev_alpha
=
0
;
double
prev_val
=
0
;
unsigned
long
iter
=
0
;
while
(
true
)
{
...
...
@@ -466,12 +523,26 @@ namespace dlib
// Interpolate a new alpha. We also make sure the step by which we
// reduce alpha is not super small.
double
step
;
if
(
d0
<
0
)
step
=
put_in_range
(
0
.
1
,
0
.
9
,
poly_min_extrap
(
f0
,
d0
,
val
));
if
(
!
have_prev_alpha
)
{
if
(
d0
<
0
)
step
=
alpha
*
put_in_range
(
0
.
1
,
0
.
9
,
poly_min_extrap
(
f0
,
d0
,
val
));
else
step
=
alpha
*
put_in_range
(
0
.
1
,
0
.
9
,
poly_min_extrap
(
f0
,
-
d0
,
val
));
have_prev_alpha
=
true
;
}
else
step
=
put_in_range
(
0
.
1
,
0
.
9
,
poly_min_extrap
(
f0
,
-
d0
,
val
));
{
if
(
d0
<
0
)
step
=
put_in_range
(
0
.
1
*
alpha
,
0
.
9
*
alpha
,
poly_min_extrap
(
f0
,
d0
,
alpha
,
val
,
prev_alpha
,
prev_val
));
else
step
=
put_in_range
(
0
.
1
*
alpha
,
0
.
9
*
alpha
,
-
poly_min_extrap
(
f0
,
-
d0
,
-
alpha
,
val
,
-
prev_alpha
,
prev_val
));
}
prev_alpha
=
alpha
;
prev_val
=
val
;
alpha
*
=
step
;
alpha
=
step
;
}
}
}
...
...
dlib/optimization/optimization_line_search_abstract.h
View file @
50012d2c
...
...
@@ -119,6 +119,28 @@ namespace dlib
- returns the point in the range [0,1] that minimizes the polynomial c(x)
!*/
// ----------------------------------------------------------------------------------------
inline
double
poly_min_extrap
(
double
f0
,
double
d0
,
double
x1
,
double
f_x1
,
double
x2
,
double
f_x2
)
/*!
requires
- 0 < x1 < x2
ensures
- let f(x) be a 3rd degree polynomial such that:
- f(0) == f0
- derivative of f(x) at x==0 is d0
- f(x1) == f_x1
- f(x2) == f_x2
- returns the point in the range [0,x2] that minimizes the polynomial f(x)
!*/
// ----------------------------------------------------------------------------------------
inline
double
lagrange_poly_min_extrap
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment