Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
57ca3e54
Commit
57ca3e54
authored
Feb 09, 2017
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Made network smaller.
parent
4dbe3337
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
20 additions
and
16 deletions
+20
-16
dnn_metric_learning_on_images_ex.cpp
examples/dnn_metric_learning_on_images_ex.cpp
+20
-16
No files found.
examples/dnn_metric_learning_on_images_ex.cpp
View file @
57ca3e54
...
...
@@ -131,9 +131,9 @@ void load_mini_batch (
// ----------------------------------------------------------------------------------------
// The next page of code defines
the ResNet-34
network. It's basically copied
// The next page of code defines
a ResNet
network. It's basically copied
// and pasted from the dnn_imagenet_ex.cpp example, except we replaced the loss
// layer with loss_metric.
// layer with loss_metric
and make the network somewhat smaller
.
template
<
template
<
int
,
template
<
typename
>
class
,
int
,
typename
>
class
block
,
int
N
,
template
<
typename
>
class
BN
,
typename
SUBNET
>
using
residual
=
add_prev1
<
block
<
N
,
BN
,
1
,
tag1
<
SUBNET
>>>
;
...
...
@@ -152,36 +152,40 @@ template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,a
// ----------------------------------------------------------------------------------------
template
<
typename
SUBNET
>
using
level1
=
res
<
512
,
res
<
512
,
res_down
<
512
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
level2
=
res
<
256
,
res
<
256
,
res
<
256
,
res
<
256
,
res
<
256
,
res_down
<
256
,
SUBNET
>>>>>>
;
template
<
typename
SUBNET
>
using
level3
=
res
<
128
,
res
<
128
,
res
<
128
,
res_down
<
128
,
SUBNET
>>>>
;
template
<
typename
SUBNET
>
using
level4
=
res
<
64
,
res
<
64
,
res
<
64
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
level0
=
res_down
<
256
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
level1
=
res
<
256
,
res
<
256
,
res_down
<
256
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
level2
=
res
<
128
,
res
<
128
,
res_down
<
128
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
level3
=
res
<
64
,
res
<
64
,
res
<
64
,
res_down
<
64
,
SUBNET
>>>>
;
template
<
typename
SUBNET
>
using
level4
=
res
<
32
,
res
<
32
,
res
<
32
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
alevel1
=
ares
<
512
,
ares
<
512
,
ares_down
<
512
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
alevel2
=
ares
<
256
,
ares
<
256
,
ares
<
256
,
ares
<
256
,
ares
<
256
,
ares_down
<
256
,
SUBNET
>>>>>>
;
template
<
typename
SUBNET
>
using
alevel3
=
ares
<
128
,
ares
<
128
,
ares
<
128
,
ares_down
<
128
,
SUBNET
>>>>
;
template
<
typename
SUBNET
>
using
alevel4
=
ares
<
64
,
ares
<
64
,
ares
<
64
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
alevel0
=
ares_down
<
256
,
SUBNET
>
;
template
<
typename
SUBNET
>
using
alevel1
=
ares
<
256
,
ares
<
256
,
ares_down
<
256
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
alevel2
=
ares
<
128
,
ares
<
128
,
ares_down
<
128
,
SUBNET
>>>
;
template
<
typename
SUBNET
>
using
alevel3
=
ares
<
64
,
ares
<
64
,
ares
<
64
,
ares_down
<
64
,
SUBNET
>>>>
;
template
<
typename
SUBNET
>
using
alevel4
=
ares
<
32
,
ares
<
32
,
ares
<
32
,
SUBNET
>>>
;
// training network type
using
net_type
=
loss_metric
<
fc_no_bias
<
128
,
avg_pool_everything
<
level0
<
level1
<
level2
<
level3
<
level4
<
max_pool
<
3
,
3
,
2
,
2
,
relu
<
bn_con
<
con
<
64
,
7
,
7
,
2
,
2
,
input_rgb_image
>>>>>>>>>>>
;
max_pool
<
3
,
3
,
2
,
2
,
relu
<
bn_con
<
con
<
32
,
7
,
7
,
2
,
2
,
input_rgb_image
_sized
<
150
>
>>>>>>>>>>>
>
;
// testing network type (replaced batch normalization with fixed affine transforms)
using
anet_type
=
loss_metric
<
fc_no_bias
<
128
,
avg_pool_everything
<
alevel0
<
alevel1
<
alevel2
<
alevel3
<
alevel4
<
max_pool
<
3
,
3
,
2
,
2
,
relu
<
affine
<
con
<
64
,
7
,
7
,
2
,
2
,
input_rgb_image
>>>>>>>>>>>
;
max_pool
<
3
,
3
,
2
,
2
,
relu
<
affine
<
con
<
32
,
7
,
7
,
2
,
2
,
input_rgb_image
_sized
<
150
>
>>>>>>>>>>>
>
;
// ----------------------------------------------------------------------------------------
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment