Commit 5e1dc620 authored by Davis King's avatar Davis King

updated specs

parent e2a2a26a
...@@ -292,6 +292,7 @@ namespace dlib { namespace tt ...@@ -292,6 +292,7 @@ namespace dlib { namespace tt
- dest.nr()==src.nr() || src.nr()==1 - dest.nr()==src.nr() || src.nr()==1
- dest.nc()==src.nc() || src.nc()==1 - dest.nc()==src.nc() || src.nc()==1
- dest.k()==src.k() || src.k()==1 - dest.k()==src.k() || src.k()==1
- is_same_object(src,dest) == false
ensures ensures
- performs: dest = beta*dest + alpha*src - performs: dest = beta*dest + alpha*src
However, how the addition happens depends on the dimensions of src. In However, how the addition happens depends on the dimensions of src. In
...@@ -316,12 +317,13 @@ namespace dlib { namespace tt ...@@ -316,12 +317,13 @@ namespace dlib { namespace tt
- grad.nc() == 1 - grad.nc() == 1
- gradient_input.k() == grad.k() - gradient_input.k() == grad.k()
- gradient_input.size() > 0 - gradient_input.size() > 0
- is_same_object(grad,gradient_input) == false
ensures ensures
- let BIAS be a tensor with all dimensions equal to 1 except for k which is >= 1. - let BIAS be a tensor with all dimensions equal to 1 except for k which is >= 1.
- let OUT be the output of add(1,OUT,1,BIAS) - let OUT be the output of add(1,OUT,1,BIAS)
- let f(gradient_input,BIAS) == dot(gradient_input,OUT) - let f(gradient_input,BIAS) == dot(gradient_input,OUT)
- Then this function computes the gradient of f() with respect to BIAS and adds - Then this function computes the gradient of f() with respect to BIAS and
it to grad. assigns it to grad.
!*/ !*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -359,6 +361,8 @@ namespace dlib { namespace tt ...@@ -359,6 +361,8 @@ namespace dlib { namespace tt
requires requires
- The dimensions of data and filters are the same as the ones given - The dimensions of data and filters are the same as the ones given
to the last call to setup(). to the last call to setup().
- is_same_object(output,data) == false
- is_same_object(output,filters) == false
ensures ensures
- convolves filters over data. - convolves filters over data.
- filters contains filters.num_samples() filters. - filters contains filters.num_samples() filters.
...@@ -380,6 +384,8 @@ namespace dlib { namespace tt ...@@ -380,6 +384,8 @@ namespace dlib { namespace tt
- data_gradient has the same dimensions as the data object give to the last - data_gradient has the same dimensions as the data object give to the last
call to setup(). call to setup().
- gradient_input has the same dimensions as the output of operator(). - gradient_input has the same dimensions as the output of operator().
- is_same_object(data_gradient,filters) == false
- is_same_object(data_gradient,gradient_input) == false
ensures ensures
- let OUT be the output of (*this)(OUT,data,filters). - let OUT be the output of (*this)(OUT,data,filters).
- let f(data,filters) == dot(OUT, gradient_input) - let f(data,filters) == dot(OUT, gradient_input)
...@@ -399,10 +405,12 @@ namespace dlib { namespace tt ...@@ -399,10 +405,12 @@ namespace dlib { namespace tt
- data has the same dimensions as the data object give to the last call to - data has the same dimensions as the data object give to the last call to
setup(). setup().
- gradient_input has the same dimensions as the output of operator(). - gradient_input has the same dimensions as the output of operator().
- is_same_object(filters_gradient,data) == false
- is_same_object(filters_gradient,gradient_input) == false
ensures ensures
- let OUT be the output of (*this)(OUT,data,filters). - let OUT be the output of (*this)(OUT,data,filters).
- let f(data,filters) == dot(OUT, gradient_input) - let f(data,filters) == dot(OUT, gradient_input)
- This function finds the gradient of f() with respect to filters and adds - This function finds the gradient of f() with respect to filters and assigns
this gradient to filters_gradient. this gradient to filters_gradient.
!*/ !*/
...@@ -444,6 +452,8 @@ namespace dlib { namespace tt ...@@ -444,6 +452,8 @@ namespace dlib { namespace tt
const tensor& src const tensor& src
); );
/*! /*!
requires
- is_same_object(dest,src) == false
ensures ensures
- #dest.num_samples() == src.num_samples() - #dest.num_samples() == src.num_samples()
- #dest.k() == src.k() - #dest.k() == src.k()
...@@ -468,6 +478,9 @@ namespace dlib { namespace tt ...@@ -468,6 +478,9 @@ namespace dlib { namespace tt
- have_same_dimensions(gradient_input,dest) == true - have_same_dimensions(gradient_input,dest) == true
- have_same_dimensions(src,grad) == true - have_same_dimensions(src,grad) == true
- dest contains the result of calling (*this)(dest,src) - dest contains the result of calling (*this)(dest,src)
- is_same_object(grad,gradient_input) == false
- is_same_object(grad,dest) == false
- is_same_object(grad,src) == false
ensures ensures
- Recalling that dest is the output of (*this)(dest,src), - Recalling that dest is the output of (*this)(dest,src),
let f(src) == dot(gradient_input,dest) let f(src) == dot(gradient_input,dest)
...@@ -500,6 +513,8 @@ namespace dlib { namespace tt ...@@ -500,6 +513,8 @@ namespace dlib { namespace tt
the spatial locations in dest (i.e. image idx, row idx, and column idx) the spatial locations in dest (i.e. image idx, row idx, and column idx)
contains the output of s() evaluated over the channel values at each contains the output of s() evaluated over the channel values at each
location. location.
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/ !*/
void softmax_gradient ( void softmax_gradient (
...@@ -511,11 +526,14 @@ namespace dlib { namespace tt ...@@ -511,11 +526,14 @@ namespace dlib { namespace tt
requires requires
- have_same_dimensions(softmaxed_data,gradient_input) == true - have_same_dimensions(softmaxed_data,gradient_input) == true
- have_same_dimensions(softmaxed_data,grad) == true - have_same_dimensions(softmaxed_data,grad) == true
- is_same_object(grad, softmaxed_data)==false
ensures ensures
- We interpret softmaxed_data as the output of softmax(softmaxed_data,SRC) for - We interpret softmaxed_data as the output of softmax(softmaxed_data,SRC) for
some SRC tensor. Then let f(SRC) == dot(gradient_input,softmaxed_data) Then some SRC tensor. Then let f(SRC) == dot(gradient_input,softmaxed_data) Then
this function computes the gradient of f() with respect to SRC and adds it to this function computes the gradient of f() with respect to SRC and adds it to
grad. grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/ !*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -529,6 +547,8 @@ namespace dlib { namespace tt ...@@ -529,6 +547,8 @@ namespace dlib { namespace tt
- have_same_dimensions(#dest, src) == true - have_same_dimensions(#dest, src) == true
- for all valid i: - for all valid i:
- #dest.host()[i] == 1/(1+std::exp(-src.host()[i])) - #dest.host()[i] == 1/(1+std::exp(-src.host()[i]))
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/ !*/
void sigmoid_gradient ( void sigmoid_gradient (
...@@ -543,11 +563,15 @@ namespace dlib { namespace tt ...@@ -543,11 +563,15 @@ namespace dlib { namespace tt
- have_same_dimensions(src,grad) == true - have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true - have_same_dimensions(src,dest) == true
- dest contains the result of calling sigmoid(dest,src) - dest contains the result of calling sigmoid(dest,src)
- is_same_object(grad,src) == false
- is_same_object(grad,dest) == false
ensures ensures
- Recalling that dest is the output of sigmoid(dest,src), - Recalling that dest is the output of sigmoid(dest,src),
let f(src) == dot(gradient_input,dest) let f(src) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and - Then this function computes the gradient of f() with respect to src and
adds it to grad. adds it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/ !*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -561,6 +585,8 @@ namespace dlib { namespace tt ...@@ -561,6 +585,8 @@ namespace dlib { namespace tt
- have_same_dimensions(#dest, src) == true - have_same_dimensions(#dest, src) == true
- for all valid i: - for all valid i:
- #dest.host()[i] == std::max(0,src.host()[i]) - #dest.host()[i] == std::max(0,src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/ !*/
void relu_gradient ( void relu_gradient (
...@@ -575,11 +601,15 @@ namespace dlib { namespace tt ...@@ -575,11 +601,15 @@ namespace dlib { namespace tt
- have_same_dimensions(src,grad) == true - have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true - have_same_dimensions(src,dest) == true
- dest contains the result of calling relu(dest,src) - dest contains the result of calling relu(dest,src)
- is_same_object(grad,src) == false
- is_same_object(grad,dest) == false
ensures ensures
- Recalling that dest is the output of relu(dest,src), - Recalling that dest is the output of relu(dest,src),
let f(src) == dot(gradient_input,dest) let f(src) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and adds - Then this function computes the gradient of f() with respect to src and adds
it to grad. it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/ !*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -593,6 +623,8 @@ namespace dlib { namespace tt ...@@ -593,6 +623,8 @@ namespace dlib { namespace tt
- have_same_dimensions(#dest, src) == true - have_same_dimensions(#dest, src) == true
- for all valid i: - for all valid i:
- #dest.host()[i] == std::tanh(src.host()[i]) - #dest.host()[i] == std::tanh(src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/ !*/
void tanh_gradient ( void tanh_gradient (
...@@ -607,11 +639,15 @@ namespace dlib { namespace tt ...@@ -607,11 +639,15 @@ namespace dlib { namespace tt
- have_same_dimensions(src,grad) == true - have_same_dimensions(src,grad) == true
- have_same_dimensions(src,dest) == true - have_same_dimensions(src,dest) == true
- dest contains the result of calling tanh(dest,src) - dest contains the result of calling tanh(dest,src)
- is_same_object(grad,src) == false
- is_same_object(grad,dest) == false
ensures ensures
- Recalling that dest is the output of tanh(dest,src), - Recalling that dest is the output of tanh(dest,src),
let f(src) == dot(gradient_input,dest) let f(src) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and adds - Then this function computes the gradient of f() with respect to src and adds
it to grad. it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/ !*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment