Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
5edb76a6
Commit
5edb76a6
authored
Feb 08, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Updated the sequence labeling trainer to allow the user to set different loss
values for different labels.
parent
e7770786
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
146 additions
and
5 deletions
+146
-5
structural_sequence_labeling_trainer.h
dlib/svm/structural_sequence_labeling_trainer.h
+39
-0
structural_sequence_labeling_trainer_abstract.h
dlib/svm/structural_sequence_labeling_trainer_abstract.h
+25
-0
structural_svm_sequence_labeling_problem.h
dlib/svm/structural_svm_sequence_labeling_problem.h
+48
-5
structural_svm_sequence_labeling_problem_abstract.h
dlib/svm/structural_svm_sequence_labeling_problem_abstract.h
+34
-0
No files found.
dlib/svm/structural_sequence_labeling_trainer.h
View file @
5edb76a6
...
...
@@ -134,6 +134,40 @@ namespace dlib
return
C
;
}
double
get_loss
(
unsigned
long
label
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
label
<
num_labels
(),
"
\t
void structural_sequence_labeling_trainer::get_loss()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
label: "
<<
label
<<
"
\n\t
num_labels(): "
<<
num_labels
()
<<
"
\n\t
this: "
<<
this
);
return
loss_values
[
label
];
}
void
set_loss
(
unsigned
long
label
,
double
value
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
label
<
num_labels
()
&&
value
>=
0
,
"
\t
void structural_sequence_labeling_trainer::set_loss()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
label: "
<<
label
<<
"
\n\t
num_labels(): "
<<
num_labels
()
<<
"
\n\t
value: "
<<
value
<<
"
\n\t
this: "
<<
this
);
loss_values
[
label
]
=
value
;
}
const
sequence_labeler
<
feature_extractor
>
train
(
const
std
::
vector
<
sample_sequence_type
>&
x
,
...
...
@@ -182,6 +216,9 @@ namespace dlib
prob
.
set_epsilon
(
eps
);
prob
.
set_c
(
C
);
prob
.
set_max_cache_size
(
max_cache_size
);
for
(
unsigned
long
i
=
0
;
i
<
loss_values
.
size
();
++
i
)
prob
.
set_loss
(
i
,
loss_values
[
i
]);
solver
(
prob
,
weights
);
return
sequence_labeler
<
feature_extractor
>
(
weights
,
fe
);
...
...
@@ -195,6 +232,7 @@ namespace dlib
bool
verbose
;
unsigned
long
num_threads
;
unsigned
long
max_cache_size
;
std
::
vector
<
double
>
loss_values
;
void
set_defaults
()
{
...
...
@@ -203,6 +241,7 @@ namespace dlib
eps
=
0
.
1
;
num_threads
=
2
;
max_cache_size
=
40
;
loss_values
.
assign
(
num_labels
(),
1
);
}
feature_extractor
fe
;
...
...
dlib/svm/structural_sequence_labeling_trainer_abstract.h
View file @
5edb76a6
...
...
@@ -190,6 +190,31 @@ namespace dlib
better generalization.
!*/
double
get_loss
(
unsigned
long
label
)
const
;
/*!
requires
- label < num_labels()
ensures
- returns the loss incurred when a sequence element with the given
label is misclassified. This value controls how much we care about
correctly classifying this type of label. Larger loss values indicate
that we care more strongly than smaller values.
!*/
void
set_loss
(
unsigned
long
label
,
double
value
);
/*!
requires
- label < num_labels()
- value >= 0
ensures
- #get_loss(label) == value
!*/
const
sequence_labeler
<
feature_extractor
>
train
(
const
std
::
vector
<
sample_sequence_type
>&
x
,
const
std
::
vector
<
labeled_sequence_type
>&
y
...
...
dlib/svm/structural_svm_sequence_labeling_problem.h
View file @
5edb76a6
...
...
@@ -114,6 +114,45 @@ namespace dlib
}
#endif
loss_values
.
assign
(
num_labels
(),
1
);
}
unsigned
long
num_labels
(
)
const
{
return
fe
.
num_labels
();
}
double
get_loss
(
unsigned
long
label
)
const
{
// make sure requires clause is not broken
DLIB_ASSERT
(
label
<
num_labels
(),
"
\t
void structural_svm_sequence_labeling_problem::get_loss()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
label: "
<<
label
<<
"
\n\t
num_labels(): "
<<
num_labels
()
<<
"
\n\t
this: "
<<
this
);
return
loss_values
[
label
];
}
void
set_loss
(
unsigned
long
label
,
double
value
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
label
<
num_labels
()
&&
value
>=
0
,
"
\t
void structural_svm_sequence_labeling_problem::set_loss()"
<<
"
\n\t
invalid inputs were given to this function"
<<
"
\n\t
label: "
<<
label
<<
"
\n\t
num_labels(): "
<<
num_labels
()
<<
"
\n\t
value: "
<<
value
<<
"
\n\t
this: "
<<
this
);
loss_values
[
label
]
=
value
;
}
private
:
...
...
@@ -166,12 +205,14 @@ namespace dlib
const
sequence_type
&
sequence_
,
const
std
::
vector
<
unsigned
long
>&
label_
,
const
feature_extractor
&
fe_
,
const
matrix
<
double
,
0
,
1
>&
weights_
const
matrix
<
double
,
0
,
1
>&
weights_
,
const
std
::
vector
<
double
>&
loss_values_
)
:
sequence
(
sequence_
),
label
(
label_
),
fe
(
fe_
),
weights
(
weights_
)
weights
(
weights_
),
loss_values
(
loss_values_
)
{
}
...
...
@@ -194,7 +235,7 @@ namespace dlib
double
loss
=
0
;
if
(
node_states
(
0
)
!=
label
[
node_id
])
loss
=
1
;
loss
=
loss_values
[
label
[
node_id
]]
;
return
fe_helpers
::
dot
(
weights
,
fe
,
sequence
,
node_states
,
node_id
)
+
loss
;
}
...
...
@@ -203,6 +244,7 @@ namespace dlib
const
std
::
vector
<
unsigned
long
>&
label
;
const
feature_extractor
&
fe
;
const
matrix
<
double
,
0
,
1
>&
weights
;
const
std
::
vector
<
double
>&
loss_values
;
};
virtual
void
separation_oracle
(
...
...
@@ -213,13 +255,13 @@ namespace dlib
)
const
{
std
::
vector
<
unsigned
long
>
y
;
find_max_factor_graph_viterbi
(
map_prob
(
samples
[
idx
],
labels
[
idx
],
fe
,
current_solution
),
y
);
find_max_factor_graph_viterbi
(
map_prob
(
samples
[
idx
],
labels
[
idx
],
fe
,
current_solution
,
loss_values
),
y
);
loss
=
0
;
for
(
unsigned
long
i
=
0
;
i
<
y
.
size
();
++
i
)
{
if
(
y
[
i
]
!=
labels
[
idx
][
i
])
loss
+=
1
;
loss
+=
loss_values
[
labels
[
idx
][
i
]]
;
}
get_joint_feature_vector
(
samples
[
idx
],
y
,
psi
);
...
...
@@ -228,6 +270,7 @@ namespace dlib
const
std
::
vector
<
sequence_type
>&
samples
;
const
std
::
vector
<
std
::
vector
<
unsigned
long
>
>&
labels
;
const
feature_extractor
&
fe
;
std
::
vector
<
double
>
loss_values
;
};
// ----------------------------------------------------------------------------------------
...
...
dlib/svm/structural_svm_sequence_labeling_problem_abstract.h
View file @
5edb76a6
...
...
@@ -64,6 +64,40 @@ namespace dlib
- This object will use num_threads threads during the optimization
procedure. You should set this parameter equal to the number of
available processing cores on your machine.
- #num_labels() == fe.num_labels()
- for all valid i: #get_loss(i) == 1
!*/
unsigned
long
num_labels
(
)
const
;
/*!
ensures
- returns the number of possible labels in this learning problem
!*/
double
get_loss
(
unsigned
long
label
)
const
;
/*!
requires
- label < num_labels()
ensures
- returns the loss incurred when a sequence element with the given
label is misclassified. This value controls how much we care about
correctly classifying this type of label. Larger loss values indicate
that we care more strongly than smaller values.
!*/
void
set_loss
(
unsigned
long
label
,
double
value
);
/*!
requires
- label < num_labels()
- value >= 0
ensures
- #get_loss(label) == value
!*/
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment