Commit 6dbc78df authored by Davis King's avatar Davis King

Fixed errors in documentation

parent f75e2dbf
...@@ -323,7 +323,7 @@ namespace dlib ...@@ -323,7 +323,7 @@ namespace dlib
- sub.get_output().nc() == 1 - sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples() - sub.get_output().num_samples() == input_tensor.num_samples()
and the output label is the predicted class for each classified object. The number and the output label is the predicted class for each classified object. The number
of possible output classes is sub.get_output().k()+1. of possible output classes is sub.get_output().k().
!*/ !*/
template < template <
......
...@@ -286,7 +286,7 @@ namespace dlib ...@@ -286,7 +286,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end(), labels.begin()). get_net().compute_loss(data.begin(), data.end(), labels.begin()).
- The optimizer will run until get_step_size() < get_min_step_size() or - The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been executes. get_max_num_epochs() training epochs have been executed.
- Each layer in the network will be optimized by its corresponding solver - Each layer in the network will be optimized by its corresponding solver
in get_solvers(). in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or - Each call to train DOES NOT reinitialize the state of get_net() or
...@@ -311,7 +311,7 @@ namespace dlib ...@@ -311,7 +311,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end()). get_net().compute_loss(data.begin(), data.end()).
- The optimizer will run until get_step_size() < get_min_step_size() or - The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been executes. get_max_num_epochs() training epochs have been executed.
- Each layer in the network will be optimized by its corresponding solver - Each layer in the network will be optimized by its corresponding solver
in get_solvers(). in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or - Each call to train DOES NOT reinitialize the state of get_net() or
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment