Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
6dbc78df
Commit
6dbc78df
authored
Apr 10, 2016
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fixed errors in documentation
parent
f75e2dbf
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
3 additions
and
3 deletions
+3
-3
loss_abstract.h
dlib/dnn/loss_abstract.h
+1
-1
trainer_abstract.h
dlib/dnn/trainer_abstract.h
+2
-2
No files found.
dlib/dnn/loss_abstract.h
View file @
6dbc78df
...
...
@@ -323,7 +323,7 @@ namespace dlib
- sub.get_output().nc() == 1
- sub.get_output().num_samples() == input_tensor.num_samples()
and the output label is the predicted class for each classified object. The number
of possible output classes is sub.get_output().k()
+1
.
of possible output classes is sub.get_output().k().
!*/
template
<
...
...
dlib/dnn/trainer_abstract.h
View file @
6dbc78df
...
...
@@ -286,7 +286,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end(), labels.begin()).
- The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been execute
s
.
get_max_num_epochs() training epochs have been execute
d
.
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
...
...
@@ -311,7 +311,7 @@ namespace dlib
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end()).
- The optimizer will run until get_step_size() < get_min_step_size() or
get_max_num_epochs() training epochs have been execute
s
.
get_max_num_epochs() training epochs have been execute
d
.
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment