Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
789deb9b
Commit
789deb9b
authored
Mar 10, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
cleaned up the kalman filter code a little.
parent
d030932e
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
187 additions
and
8 deletions
+187
-8
kalman_filter.h
dlib/filtering/kalman_filter.h
+33
-8
kalman_filter_abstract.h
dlib/filtering/kalman_filter_abstract.h
+154
-0
No files found.
dlib/filtering/kalman_filter.h
View file @
789deb9b
...
...
@@ -32,30 +32,46 @@ namespace dlib
}
void
set_observation_model
(
const
matrix
<
double
,
measurements
,
states
>&
H_
)
{
H
=
H_
;
}
void
set_transit
oi
n_model
(
const
matrix
<
double
,
states
,
states
>&
A_
)
{
A
=
A_
;
}
void
set_transit
io
n_model
(
const
matrix
<
double
,
states
,
states
>&
A_
)
{
A
=
A_
;
}
void
set_process_noise
(
const
matrix
<
double
,
states
,
states
>&
Q_
)
{
Q
=
Q_
;
}
void
set_measurement_noise
(
const
matrix
<
double
,
measurements
,
measurements
>&
R_
)
{
R
=
R_
;
}
void
set_estimation_error_covariance
(
const
matrix
<
double
,
states
,
states
>&
P_
)
{
P
=
P_
;
}
const
matrix
<
double
,
measurements
,
states
>&
get_observation_model
(
)
const
{
return
H
;
}
const
matrix
<
double
,
states
,
states
>&
get_transition_model
(
)
const
{
return
A
;
}
const
matrix
<
double
,
states
,
states
>&
get_process_noise
(
)
const
{
return
Q
;
}
const
matrix
<
double
,
measurements
,
measurements
>&
get_measurement_noise
(
)
const
{
return
R
;
}
void
update
(
)
{
// propagate estimation error covariance forward
P
=
A
*
P
*
trans
(
A
)
+
Q
;
const
matrix
<
double
,
states
,
measurements
>
K
=
P
*
trans
(
H
)
*
pinv
(
H
*
P
*
trans
(
H
)
+
R
);
// propagate state forward
x
=
xb
;
xb
=
A
*
x
;
P
=
(
identity_matrix
<
double
,
states
>
()
-
K
*
H
)
*
P
;
}
void
update
(
const
matrix
<
double
,
measurements
,
1
>&
z
)
{
// propagate estimation error covariance forward
P
=
A
*
P
*
trans
(
A
)
+
Q
;
// compute Kalman gain matrix
const
matrix
<
double
,
states
,
measurements
>
K
=
P
*
trans
(
H
)
*
pinv
(
H
*
P
*
trans
(
H
)
+
R
);
if
(
got_first_meas
)
{
const
matrix
<
double
,
measurements
,
1
>
res
=
z
-
H
*
xb
;
// correct the current state estimate
x
=
xb
+
K
*
res
;
}
else
...
...
@@ -65,23 +81,32 @@ namespace dlib
x
=
pinv
(
H
)
*
z
;
got_first_meas
=
true
;
}
// propagate state forward in time
xb
=
A
*
x
;
// update estimation error covariance since we got a measurement.
P
=
(
identity_matrix
<
double
,
states
>
()
-
K
*
H
)
*
P
;
}
const
matrix
<
double
,
states
,
1
>&
get_current_state
()
const
matrix
<
double
,
states
,
1
>&
get_current_state
(
)
const
{
return
x
;
}
const
matrix
<
double
,
states
,
1
>&
get_predicted_next_state
()
const
matrix
<
double
,
states
,
1
>&
get_predicted_next_state
(
)
const
{
return
xb
;
}
const
matrix
<
double
,
states
,
states
>&
get_current_estimation_error_covariance
(
)
const
{
return
P
;
}
friend
inline
void
serialize
(
const
kalman_filter
&
item
,
std
::
ostream
&
out
)
{
int
version
=
1
;
...
...
dlib/filtering/kalman_filter_abstract.h
View file @
789deb9b
...
...
@@ -7,6 +7,160 @@
namespace
dlib
{
// ----------------------------------------------------------------------------------------
template
<
long
states
,
long
measurements
>
class
kalman_filter
{
/*!
REQUIREMENTS ON states
states > 0
REQUIREMENTS ON measurements
measurements > 0
WHAT THIS OBJECT REPRESENTS
!*/
public
:
kalman_filter
(
);
/*!
- #get_observation_model() == 0
- #get_transition_model() == 0
- #get_process_noise() == 0
- #get_measurement_noise() == 0
- #get_current_state() == 0
- #get_predicted_next_state() == 0
- #get_current_estimation_error_covariance() == the identity matrix
!*/
void
set_observation_model
(
const
matrix
<
double
,
measurements
,
states
>&
H_
)
{
H
=
H_
;
}
void
set_transition_model
(
const
matrix
<
double
,
states
,
states
>&
A_
)
{
A
=
A_
;
}
void
set_process_noise
(
const
matrix
<
double
,
states
,
states
>&
Q_
)
{
Q
=
Q_
;
}
void
set_measurement_noise
(
const
matrix
<
double
,
measurements
,
measurements
>&
R_
)
{
R
=
R_
;
}
void
set_estimation_error_covariance
(
const
matrix
<
double
,
states
,
states
>&
P_
)
{
P
=
P_
;
}
const
matrix
<
double
,
measurements
,
states
>&
get_observation_model
(
)
const
{
return
H
;
}
const
matrix
<
double
,
states
,
states
>&
get_transition_model
(
)
const
{
return
A
;
}
const
matrix
<
double
,
states
,
states
>&
get_process_noise
(
)
const
{
return
Q
;
}
const
matrix
<
double
,
measurements
,
measurements
>&
get_measurement_noise
(
)
const
{
return
R
;
}
void
update
(
)
{
// propagate estimation error covariance forward
P
=
A
*
P
*
trans
(
A
)
+
Q
;
// propagate state forward
x
=
xb
;
xb
=
A
*
x
;
}
void
update
(
const
matrix
<
double
,
measurements
,
1
>&
z
)
{
// propagate estimation error covariance forward
P
=
A
*
P
*
trans
(
A
)
+
Q
;
// compute Kalman gain matrix
const
matrix
<
double
,
states
,
measurements
>
K
=
P
*
trans
(
H
)
*
pinv
(
H
*
P
*
trans
(
H
)
+
R
);
if
(
got_first_meas
)
{
const
matrix
<
double
,
measurements
,
1
>
res
=
z
-
H
*
xb
;
// correct the current state estimate
x
=
xb
+
K
*
res
;
}
else
{
// Since we don't have a previous state estimate at the start of filtering,
// we will just set the current state to whatever is indicated by the measurement
x
=
pinv
(
H
)
*
z
;
got_first_meas
=
true
;
}
// propagate state forward in time
xb
=
A
*
x
;
// update estimation error covariance since we got a measurement.
P
=
(
identity_matrix
<
double
,
states
>
()
-
K
*
H
)
*
P
;
}
const
matrix
<
double
,
states
,
1
>&
get_current_state
(
)
const
{
return
x
;
}
const
matrix
<
double
,
states
,
1
>&
get_predicted_next_state
(
)
const
{
return
xb
;
}
const
matrix
<
double
,
states
,
states
>&
get_current_estimation_error_covariance
(
)
const
{
return
P
;
}
friend
inline
void
serialize
(
const
kalman_filter
&
item
,
std
::
ostream
&
out
)
{
int
version
=
1
;
serialize
(
version
,
out
);
serialize
(
item
.
got_first_meas
,
out
);
serialize
(
item
.
x
,
out
);
serialize
(
item
.
xb
,
out
);
serialize
(
item
.
P
,
out
);
serialize
(
item
.
H
,
out
);
serialize
(
item
.
A
,
out
);
serialize
(
item
.
Q
,
out
);
serialize
(
item
.
R
,
out
);
}
friend
inline
void
deserialize
(
kalman_filter
&
item
,
std
::
istream
&
in
)
{
int
version
=
0
;
deserialize
(
version
,
in
);
if
(
version
!=
1
)
throw
dlib
::
serialization_error
(
"Unknown version number found while deserializing kalman_filter object."
);
deserialize
(
item
.
got_first_meas
,
in
);
deserialize
(
item
.
x
,
in
);
deserialize
(
item
.
xb
,
in
);
deserialize
(
item
.
P
,
in
);
deserialize
(
item
.
H
,
in
);
deserialize
(
item
.
A
,
in
);
deserialize
(
item
.
Q
,
in
);
deserialize
(
item
.
R
,
in
);
}
private
:
bool
got_first_meas
;
matrix
<
double
,
states
,
1
>
x
,
xb
;
matrix
<
double
,
states
,
states
>
P
;
matrix
<
double
,
measurements
,
states
>
H
;
matrix
<
double
,
states
,
states
>
A
;
matrix
<
double
,
states
,
states
>
Q
;
matrix
<
double
,
measurements
,
measurements
>
R
;
};
// ----------------------------------------------------------------------------------------
void
serialize
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment