Commit 7d35e257 authored by Davis King's avatar Davis King

Added is_track_association_problem()

parent 68f95a19
......@@ -18,6 +18,7 @@
#include "../optimization.h"
#include "svm_nu_trainer.h"
#include <vector>
#include <set>
namespace dlib
{
......@@ -306,6 +307,62 @@ namespace dlib
return false;
}
// ----------------------------------------------------------------------------------------
template <
typename detection_type,
typename detection_id_type
>
bool is_track_association_problem (
const std::vector<std::vector<std::pair<detection_type,detection_id_type> > >& samples
)
{
if (samples.size() == 0)
return false;
unsigned long num_nonzero_elements = 0;
for (unsigned long i = 0; i < samples.size(); ++i)
{
if (samples.size() > 0)
++num_nonzero_elements;
}
if (num_nonzero_elements < 2)
return false;
// now make sure the detection_id_type values are unique within each time step.
for (unsigned long i = 0; i < samples.size(); ++i)
{
std::set<detection_id_type> vals;
for (unsigned long j = 0; j < samples[i].size(); ++j)
vals.insert(samples[i][j].second);
if (vals.size() != samples[i].size())
return false;
}
// passed all tests so it's good
return true;
}
// ----------------------------------------------------------------------------------------
template <
typename detection_type,
typename detection_id_type
>
bool is_track_association_problem (
const std::vector<std::vector<std::vector<std::pair<detection_type,detection_id_type> > > >& samples
)
{
for (unsigned long i = 0; i < samples.size(); ++i)
{
if (!is_track_association_problem(samples[i]))
return false;
}
// passed all tests so it's good
return true;
}
// ----------------------------------------------------------------------------------------
template <
......
......@@ -162,6 +162,61 @@ namespace dlib
- min(samples[i].first.size(), samples[i].second.size()) == N
!*/
// ----------------------------------------------------------------------------------------
template <
typename detection_type,
typename detection_id_type
>
bool is_track_association_problem (
const std::vector<std::vector<std::pair<detection_type,detection_id_type> > >& samples
);
/*!
ensures
- In this tracking model you get a set of detections at each time step and are
expected to associate each detection with a track or have it spawn a new
track. Therefore, a track association problem is a machine learning problem
where you are given a dataset of example input detections and are expected to
learn to perform the proper detection to track association.
- This function checks if samples can form a valid dataset for this machine
learning problem and returns true if this is the case. This means we should
interpret samples in the following way:
- samples is a track history and for each valid i:
- samples[i] is a set of labeled detections from the i-th time step.
Each detection has been labeled with its "true object identity".
That is, all the detection throughout the history with the same
detection_id_type value are detections from the same object and
therefore should be associated to the same track.
Putting this all together, samples is a valid track association learning
problem if and only if the following are all true:
- samples.size() > 0
- There are at least two values, i and j such that:
- i != j
- samples[i].size() > 0
- samples[j].size() > 0
Or in other words, there needs to be some detections in samples somewhere
or it is impossible to learn anything.
- for all valid i:
- for all valid j and k where j!=k:
- samples[i][j].second != samples[i][k].second
(i.e. the detection_id_type values must be unique within each
time step. Or in other words, you can't have two detections on
the same object in a single time step.)
!*/
template <
typename detection_type,
typename detection_id_type
>
bool is_track_association_problem (
const std::vector<std::vector<std::vector<std::pair<detection_type,detection_id_type> > > >& samples
);
/*!
ensures
- returns true if is_track_association_problem(samples[i]) == true for all
valid i and false otherwise.
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment