Commit 80e501d8 authored by Davis King's avatar Davis King

Added graph cut tools. This is the new min_cut algorithm and find_max_factor_graph_potts()

routine.
parent 37bc7b23
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_GRAPH_CUTs_HEADER_
#define DLIB_GRAPH_CUTs_HEADER_
#include "graph_cuts/min_cut.h"
#include "graph_cuts/general_flow_graph.h"
#include "graph_cuts/find_max_factor_graph_potts.h"
#endif // DLIB_GRAPH_CUTs_HEADER_
This diff is collapsed.
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_FIND_MAX_FACTOR_GRAPH_PoTTS_ABSTRACT_H__
#ifdef DLIB_FIND_MAX_FACTOR_GRAPH_PoTTS_ABSTRACT_H__
#include "../matrix.h"
#include "min_cut_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
class potts_problem
{
/*!
WHAT THIS OBJECT REPRESENTS
This object represents a boolean valued factor graph or graphical model
that can be efficiently operated on using graph cuts. In particular, this
object defines the interface a MAP problem on a factor graph must
implement if it is to be solved using the find_max_factor_graph_potts()
routine defined at the bottom of this file.
Note that there is no dlib::potts_problem object. What you are looking
at here is simply the interface definition for a Potts problem. You must
implement your own version of this object for the problem you wish to
solve and then pass it to the find_max_factor_graph_potts() routine.
Note also that a factor graph should not have any nodes which are
neighbors with themselves. Additionally, the graph is undirected. This
mean that if A is a neighbor of B then B must be a neighbor of A for
the MAP problem to be valid.
!*/
public:
unsigned long number_of_nodes (
) const;
/*!
ensures
- returns the number of nodes in the factor graph. Or in other words,
returns the number of variables in the MAP problem/Potts model.
!*/
unsigned long number_of_neighbors (
unsigned long idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns the number of neighbors of node idx.
!*/
// This is an optional variable which specifies a number that is always
// greater than or equal to number_of_neighbors(idx). If you don't know
// the value at compile time then either don't include max_number_of_neighbors
// in your potts_problem object or set it to 0.
const static unsigned long max_number_of_neighbors = 0;
unsigned long get_neighbor (
unsigned long idx,
unsigned long n
) const;
/*!
requires
- idx < number_of_nodes()
- n < number_of_neighbors(idx)
ensures
- returns the node index value of the n-th neighbor of
the node with index value idx.
- The neighbor relationship is reciprocal. That is, if
get_neighbor(A,i)==B then there is a value of j such
that get_neighbor(B,j)==A.
- A node is never its own neighbor. That is, there is
no i such that get_neighbor(idx,i)==idx.
!*/
unsigned long get_neighbor_idx (
unsigned long idx1,
unsigned long idx2
) const;
/*!
requires
- idx1 < number_of_nodes()
- idx2 < number_of_nodes()
ensures
- This function is basically the inverse of get_neighbor().
- returns a number IDX such that:
- get_neighbor(idx1,IDX) == idx2
- IDX < number_of_neighbors(node_idx1)
!*/
void set_label (
const unsigned long& idx,
node_label value
);
/*!
requires
- idx < number_of_nodes()
ensures
- #get_label(idx) == value
!*/
node_label get_label (
const unsigned long& idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns the current label for the idx-th node. This is a value which is
0 if the node's label is false and is any other value if it is true.
Note that this value is not used by factor_value() or factor_value_disagreement().
It is simply here to provide a mechanism for find_max_factor_graph_potts()
to return its labeled result. Additionally, the reason it returns a
node_label rather than a bool is because doing it this way facilitates
use of a graph cut algorithm for the solution of the MAP problem. For
more of an explanation you should read the paper referenced by the min_cut
object.
!*/
// This typedef should be for a type like int or double. It
// must also be capable of representing signed values.
typedef an_integer_or_real_type value_type;
value_type factor_value (
unsigned long idx,
bool value
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns a value which indicates how "good" it is to assign the idx-node
a label equal to value. The larger the value, the more desirable
the label contained by value.
!*/
value_type factor_value_disagreement (
unsigned long idx1,
unsigned long idx2
) const;
/*!
requires
- idx1 < number_of_nodes()
- idx2 < number_of_nodes()
- idx1 != idx2
- the idx1-th node and idx2-th node are neighbors in the graph. That is,
get_neighbor(idx1,i)==idx2 for some value of i.
ensures
- returns a number >= 0. This is the penalty for giving node idx1 and idx2
different labels. Larger values indicate a larger penalty.
- this function is symmetric. That is, it is true that:
factor_value_disagreement(i,j) == factor_value_disagreement(j,i)
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename potts_problem
>
typename potts_problem::value_type potts_model_score (
const potts_problem& prob
);
/*!
requires
- potts_problem == an object with an interface compatible with the potts_problem
object defined at the top of this file.
- for all valid i and j:
- prob.factor_value_disagreement(i,j) == prob.factor_value_disagreement(j,i)
ensures
- computes the model score for the given potts_problem. To define this
precisely:
- let L(i) == the boolean label of the ith variable in prob. Or in other
words, L(i) == (prob.get_label(i) != 0).
- let F == the sum over valid i of prob.factor_value(i, L(i)).
- Let D == the sum of all values of prob.factor_value_disagreement(i,j)
whenever the following conditions are true about i and j:
- i and j are neighbors in the graph defined by prob, that is,
it is valid to call prob.factor_value_disagreement(i,j).
- L(i) != L(j)
- i < j
(i.e. We want to make sure to only count the edge between i and j once)
- Then this function returns F - D
!*/
// ----------------------------------------------------------------------------------------
template <
typename potts_problem
>
void find_max_factor_graph_potts (
potts_problem& prob
)
/*!
requires
- potts_problem == an object with an interface compatible with the potts_problem
object defined at the top of this file.
- for all valid i and j:
- prob.factor_value_disagreement(i,j) >= 0
- prob.factor_value_disagreement(i,j) == prob.factor_value_disagreement(j,i)
ensures
- This function is a tool for exactly solving the MAP problem in a Potts
model. In particular, this means that this function finds the assignments
to all the labels in prob which maximizes potts_model_score(#prob).
- Note that this routine is a little bit faster if all the values
returned by prob.factor_value() are negative. So if you can arrange for that
to be true without spending any extra CPU cycles then it might be a good idea
to do so.
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_FIND_MAX_FACTOR_GRAPH_PoTTS_ABSTRACT_H__
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_GENERAL_FLOW_GRaPH_H__
#define DLIB_GENERAL_FLOW_GRaPH_H__
#include "../graph_utils.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
namespace impl
{
template <
typename directed_graph_type
>
class general_flow_graph
{
/*!
this is a utility class used by dlib::min_cut to convert a directed_graph
into the kind of flow graph expected by the min_cut object's main block
of code.
!*/
directed_graph_type& g;
typedef typename directed_graph_type::node_type node_type;
typedef typename directed_graph_type::type node_label;
public:
general_flow_graph(
directed_graph_type& g_
) : g(g_)
{
}
class out_edge_iterator
{
friend class general_flow_graph;
unsigned long idx; // base node idx
unsigned long cnt; // count over the neighbors of idx
public:
out_edge_iterator(
):idx(0),cnt(0) {}
out_edge_iterator(
unsigned long idx_,
unsigned long cnt_
):idx(idx_),cnt(cnt_)
{}
bool operator!= (
const out_edge_iterator& item
) const { return cnt != item.cnt; }
out_edge_iterator& operator++(
)
{
++cnt;
return *this;
}
};
class in_edge_iterator
{
friend class general_flow_graph;
unsigned long idx; // base node idx
unsigned long cnt; // count over the neighbors of idx
public:
in_edge_iterator(
):idx(0),cnt(0) {}
in_edge_iterator(
unsigned long idx_,
unsigned long cnt_
):idx(idx_),cnt(cnt_)
{}
bool operator!= (
const in_edge_iterator& item
) const { return cnt != item.cnt; }
in_edge_iterator& operator++(
)
{
++cnt;
return *this;
}
};
unsigned long number_of_nodes (
) const { return g.number_of_nodes(); }
out_edge_iterator out_begin(
const unsigned long& it
) const { return out_edge_iterator(it, 0); }
in_edge_iterator in_begin(
const unsigned long& it
) const { return in_edge_iterator(it, 0); }
out_edge_iterator out_end(
const unsigned long& it
) const { return out_edge_iterator(it, g.node(it).number_of_children()); }
in_edge_iterator in_end(
const unsigned long& it
) const { return in_edge_iterator(it, g.node(it).number_of_parents()); }
unsigned long node_id (
const out_edge_iterator& it
) const { return g.node(it.idx).child(it.cnt).index(); }
unsigned long node_id (
const in_edge_iterator& it
) const { return g.node(it.idx).parent(it.cnt).index(); }
typedef typename directed_graph_type::edge_type edge_type;
edge_type get_flow (const unsigned long& it1, const unsigned long& it2) const
{
return edge(g, it1, it2);
}
edge_type get_flow (const out_edge_iterator& it) const
{
return g.node(it.idx).child_edge(it.cnt);
}
edge_type get_flow (const in_edge_iterator& it) const
{
return g.node(it.idx).parent_edge(it.cnt);
}
void adjust_flow (
const unsigned long& it1,
const unsigned long& it2,
const edge_type& value
)
{
edge(g, it1, it2) += value;
edge(g, it2, it1) -= value;
}
void set_label (
const unsigned long& it,
node_label value
)
{
g.node(it).data = value;
}
node_label get_label (
const unsigned long& it
) const
{
return g.node(it).data;
}
};
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_GENERAL_FLOW_GRaPH_H__
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment