Commit 825ae091 authored by Davis King's avatar Davis King

merged

parents f1c734d6 c42fdead
...@@ -59,7 +59,9 @@ namespace dlib ...@@ -59,7 +59,9 @@ namespace dlib
for (long r = 0; r < v.nr(); ++r) for (long r = 0; r < v.nr(); ++r)
{ {
spec_samps.push_back(trans(rowm(v,r))); spec_samps.push_back(trans(rowm(v,r)));
spec_samps.back() /= length(spec_samps.back()); const double len = length(spec_samps.back());
if (len != 0)
spec_samps.back() /= len;
} }
// Finally do the K-means clustering // Finally do the K-means clustering
pick_initial_centers(num_clusters, centers, spec_samps); pick_initial_centers(num_clusters, centers, spec_samps);
......
...@@ -341,7 +341,7 @@ namespace dlib ...@@ -341,7 +341,7 @@ namespace dlib
boxes_overlap(overlap_tester) boxes_overlap(overlap_tester)
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(scanner_.get_num_detection_templates() > 0 && w_.size() > 0, DLIB_CASSERT(scanner_.get_num_detection_templates() > 0 && w_.size() > 0,
"\t object_detector::object_detector(scanner_,overlap_tester,w_)" "\t object_detector::object_detector(scanner_,overlap_tester,w_)"
<< "\n\t Invalid inputs were given to this function " << "\n\t Invalid inputs were given to this function "
<< "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates() << "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates()
...@@ -349,10 +349,9 @@ namespace dlib ...@@ -349,10 +349,9 @@ namespace dlib
<< "\n\t this: " << this << "\n\t this: " << this
); );
#ifdef ENABLE_ASSERTS
for (unsigned long i = 0; i < w_.size(); ++i) for (unsigned long i = 0; i < w_.size(); ++i)
{ {
DLIB_ASSERT(w_[i].size() == scanner_.get_num_dimensions() + 1, DLIB_CASSERT(w_[i].size() == scanner_.get_num_dimensions() + 1,
"\t object_detector::object_detector(scanner_,overlap_tester,w_)" "\t object_detector::object_detector(scanner_,overlap_tester,w_)"
<< "\n\t Invalid inputs were given to this function " << "\n\t Invalid inputs were given to this function "
<< "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates() << "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates()
...@@ -361,7 +360,6 @@ namespace dlib ...@@ -361,7 +360,6 @@ namespace dlib
<< "\n\t this: " << this << "\n\t this: " << this
); );
} }
#endif
scanner.copy_configuration(scanner_); scanner.copy_configuration(scanner_);
w.resize(w_.size()); w.resize(w_.size());
...@@ -382,7 +380,7 @@ namespace dlib ...@@ -382,7 +380,7 @@ namespace dlib
const std::vector<object_detector>& detectors const std::vector<object_detector>& detectors
) )
{ {
DLIB_ASSERT(detectors.size() != 0, DLIB_CASSERT(detectors.size() != 0,
"\t object_detector::object_detector(detectors)" "\t object_detector::object_detector(detectors)"
<< "\n\t Invalid inputs were given to this function " << "\n\t Invalid inputs were given to this function "
<< "\n\t this: " << this << "\n\t this: " << this
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include "../geometry.h" #include "../geometry.h"
#include "../pixel.h" #include "../pixel.h"
#include "../console_progress_indicator.h" #include "../console_progress_indicator.h"
#include <utility>
namespace dlib namespace dlib
{ {
...@@ -57,8 +58,11 @@ namespace dlib ...@@ -57,8 +58,11 @@ namespace dlib
std::vector<split_feature> splits; std::vector<split_feature> splits;
std::vector<matrix<float,0,1> > leaf_values; std::vector<matrix<float,0,1> > leaf_values;
unsigned long num_leaves() const { return leaf_values.size(); }
inline const matrix<float,0,1>& operator()( inline const matrix<float,0,1>& operator()(
const std::vector<float>& feature_pixel_values const std::vector<float>& feature_pixel_values,
unsigned long& i
) const ) const
/*! /*!
requires requires
...@@ -69,9 +73,10 @@ namespace dlib ...@@ -69,9 +73,10 @@ namespace dlib
(i.e. there needs to be the right number of leaves given the number of splits in the tree) (i.e. there needs to be the right number of leaves given the number of splits in the tree)
ensures ensures
- runs through the tree and returns the vector at the leaf we end up in. - runs through the tree and returns the vector at the leaf we end up in.
- #i == the selected leaf node index.
!*/ !*/
{ {
unsigned long i = 0; i = 0;
while (i < splits.size()) while (i < splits.size())
{ {
if (feature_pixel_values[splits[i].idx1] - feature_pixel_values[splits[i].idx2] > splits[i].thresh) if (feature_pixel_values[splits[i].idx1] - feature_pixel_values[splits[i].idx2] > splits[i].thresh)
...@@ -79,7 +84,8 @@ namespace dlib ...@@ -79,7 +84,8 @@ namespace dlib
else else
i = right_child(i); i = right_child(i);
} }
return leaf_values[i - splits.size()]; i = i - splits.size();
return leaf_values[i];
} }
friend void serialize (const regression_tree& item, std::ostream& out) friend void serialize (const regression_tree& item, std::ostream& out)
...@@ -319,6 +325,16 @@ namespace dlib ...@@ -319,6 +325,16 @@ namespace dlib
return initial_shape.size()/2; return initial_shape.size()/2;
} }
unsigned long num_features (
) const
{
unsigned long num = 0;
for (unsigned long iter = 0; iter < forests.size(); ++iter)
for (unsigned long i = 0; i < forests[iter].size(); ++i)
num += forests[iter][i].num_leaves();
return num;
}
template <typename image_type> template <typename image_type>
full_object_detection operator()( full_object_detection operator()(
const image_type& img, const image_type& img,
...@@ -330,10 +346,47 @@ namespace dlib ...@@ -330,10 +346,47 @@ namespace dlib
std::vector<float> feature_pixel_values; std::vector<float> feature_pixel_values;
for (unsigned long iter = 0; iter < forests.size(); ++iter) for (unsigned long iter = 0; iter < forests.size(); ++iter)
{ {
extract_feature_pixel_values(img, rect, current_shape, initial_shape, anchor_idx[iter], deltas[iter], feature_pixel_values); extract_feature_pixel_values(img, rect, current_shape, initial_shape,
anchor_idx[iter], deltas[iter], feature_pixel_values);
unsigned long leaf_idx;
// evaluate all the trees at this level of the cascade. // evaluate all the trees at this level of the cascade.
for (unsigned long i = 0; i < forests[iter].size(); ++i) for (unsigned long i = 0; i < forests[iter].size(); ++i)
current_shape += forests[iter][i](feature_pixel_values); current_shape += forests[iter][i](feature_pixel_values, leaf_idx);
}
// convert the current_shape into a full_object_detection
const point_transform_affine tform_to_img = unnormalizing_tform(rect);
std::vector<point> parts(current_shape.size()/2);
for (unsigned long i = 0; i < parts.size(); ++i)
parts[i] = tform_to_img(location(current_shape, i));
return full_object_detection(rect, parts);
}
template <typename image_type, typename T, typename U>
full_object_detection operator()(
const image_type& img,
const rectangle& rect,
std::vector<std::pair<T,U> >& feats
) const
{
feats.clear();
using namespace impl;
matrix<float,0,1> current_shape = initial_shape;
std::vector<float> feature_pixel_values;
unsigned long feat_offset = 0;
for (unsigned long iter = 0; iter < forests.size(); ++iter)
{
extract_feature_pixel_values(img, rect, current_shape, initial_shape,
anchor_idx[iter], deltas[iter], feature_pixel_values);
// evaluate all the trees at this level of the cascade.
for (unsigned long i = 0; i < forests[iter].size(); ++i)
{
unsigned long leaf_idx;
current_shape += forests[iter][i](feature_pixel_values, leaf_idx);
feats.push_back(std::make_pair(feat_offset+leaf_idx, 1));
feat_offset += forests[iter][i].num_leaves();
}
} }
// convert the current_shape into a full_object_detection // convert the current_shape into a full_object_detection
...@@ -563,6 +616,7 @@ namespace dlib ...@@ -563,6 +616,7 @@ namespace dlib
// make sure the objects agree on the number of parts and that there is at // make sure the objects agree on the number of parts and that there is at
// least one full_object_detection. // least one full_object_detection.
unsigned long num_parts = 0; unsigned long num_parts = 0;
std::vector<int> part_present;
for (unsigned long i = 0; i < objects.size(); ++i) for (unsigned long i = 0; i < objects.size(); ++i)
{ {
for (unsigned long j = 0; j < objects[i].size(); ++j) for (unsigned long j = 0; j < objects[i].size(); ++j)
...@@ -574,6 +628,7 @@ namespace dlib ...@@ -574,6 +628,7 @@ namespace dlib
"\t shape_predictor shape_predictor_trainer::train()" "\t shape_predictor shape_predictor_trainer::train()"
<< "\n\t You can't give objects that don't have any parts to the trainer." << "\n\t You can't give objects that don't have any parts to the trainer."
); );
part_present.resize(num_parts);
} }
else else
{ {
...@@ -584,12 +639,22 @@ namespace dlib ...@@ -584,12 +639,22 @@ namespace dlib
<< "\n\t num_parts: " << num_parts << "\n\t num_parts: " << num_parts
); );
} }
for (unsigned long p = 0; p < objects[i][j].num_parts(); ++p)
{
if (objects[i][j].part(p) != OBJECT_PART_NOT_PRESENT)
part_present[p] = 1;
}
} }
} }
DLIB_CASSERT(num_parts != 0, DLIB_CASSERT(num_parts != 0,
"\t shape_predictor shape_predictor_trainer::train()" "\t shape_predictor shape_predictor_trainer::train()"
<< "\n\t You must give at least one full_object_detection if you want to train a shape model and it must have parts." << "\n\t You must give at least one full_object_detection if you want to train a shape model and it must have parts."
); );
DLIB_CASSERT(sum(mat(part_present)) == (long)num_parts,
"\t shape_predictor shape_predictor_trainer::train()"
<< "\n\t Each part must appear at least once in this training data. That is, "
<< "\n\t you can't have a part that is always set to OBJECT_PART_NOT_PRESENT."
);
...@@ -646,19 +711,33 @@ namespace dlib ...@@ -646,19 +711,33 @@ namespace dlib
private: private:
static matrix<float,0,1> object_to_shape ( static void object_to_shape (
const full_object_detection& obj const full_object_detection& obj,
matrix<float,0,1>& shape,
matrix<float,0,1>& present // a mask telling which elements of #shape are present.
) )
{ {
matrix<float,0,1> shape(obj.num_parts()*2); shape.set_size(obj.num_parts()*2);
present.set_size(obj.num_parts()*2);
const point_transform_affine tform_from_img = impl::normalizing_tform(obj.get_rect()); const point_transform_affine tform_from_img = impl::normalizing_tform(obj.get_rect());
for (unsigned long i = 0; i < obj.num_parts(); ++i) for (unsigned long i = 0; i < obj.num_parts(); ++i)
{
if (obj.part(i) != OBJECT_PART_NOT_PRESENT)
{ {
vector<float,2> p = tform_from_img(obj.part(i)); vector<float,2> p = tform_from_img(obj.part(i));
shape(2*i) = p.x(); shape(2*i) = p.x();
shape(2*i+1) = p.y(); shape(2*i+1) = p.y();
present(2*i) = 1;
present(2*i+1) = 1;
}
else
{
shape(2*i) = 0;
shape(2*i+1) = 0;
present(2*i) = 0;
present(2*i+1) = 0;
}
} }
return shape;
} }
struct training_sample struct training_sample
...@@ -671,7 +750,9 @@ namespace dlib ...@@ -671,7 +750,9 @@ namespace dlib
pixel when you look it up relative to the shape in current_shape. pixel when you look it up relative to the shape in current_shape.
- target_shape == The truth shape. Stays constant during the whole - target_shape == The truth shape. Stays constant during the whole
training process. training process (except for the parts that are not present, those are
always equal to the current_shape values).
- present == 0/1 mask saying which parts of target_shape are present.
- rect == the position of the object in the image_idx-th image. All shape - rect == the position of the object in the image_idx-th image. All shape
coordinates are coded relative to this rectangle. coordinates are coded relative to this rectangle.
!*/ !*/
...@@ -679,6 +760,7 @@ namespace dlib ...@@ -679,6 +760,7 @@ namespace dlib
unsigned long image_idx; unsigned long image_idx;
rectangle rect; rectangle rect;
matrix<float,0,1> target_shape; matrix<float,0,1> target_shape;
matrix<float,0,1> present;
matrix<float,0,1> current_shape; matrix<float,0,1> current_shape;
std::vector<float> feature_pixel_values; std::vector<float> feature_pixel_values;
...@@ -688,6 +770,7 @@ namespace dlib ...@@ -688,6 +770,7 @@ namespace dlib
std::swap(image_idx, item.image_idx); std::swap(image_idx, item.image_idx);
std::swap(rect, item.rect); std::swap(rect, item.rect);
target_shape.swap(item.target_shape); target_shape.swap(item.target_shape);
present.swap(item.present);
current_shape.swap(item.current_shape); current_shape.swap(item.current_shape);
feature_pixel_values.swap(item.feature_pixel_values); feature_pixel_values.swap(item.feature_pixel_values);
} }
...@@ -727,17 +810,38 @@ namespace dlib ...@@ -727,17 +810,38 @@ namespace dlib
// Now all the parts contain the ranges for the leaves so we can use them to // Now all the parts contain the ranges for the leaves so we can use them to
// compute the average leaf values. // compute the average leaf values.
matrix<float,0,1> present_counts(samples[0].target_shape.size());
tree.leaf_values.resize(parts.size()); tree.leaf_values.resize(parts.size());
for (unsigned long i = 0; i < parts.size(); ++i) for (unsigned long i = 0; i < parts.size(); ++i)
{ {
// Get the present counts for each dimension so we can divide each
// dimension by the number of observations we have on it to find the mean
// displacement in each leaf.
present_counts = 0;
for (unsigned long j = parts[i].first; j < parts[i].second; ++j)
present_counts += samples[j].present;
present_counts = dlib::reciprocal(present_counts);
if (parts[i].second != parts[i].first) if (parts[i].second != parts[i].first)
tree.leaf_values[i] = sums[num_split_nodes+i]*get_nu()/(parts[i].second - parts[i].first); tree.leaf_values[i] = pointwise_multiply(present_counts,sums[num_split_nodes+i]*get_nu());
else else
tree.leaf_values[i] = zeros_matrix(samples[0].target_shape); tree.leaf_values[i] = zeros_matrix(samples[0].target_shape);
// now adjust the current shape based on these predictions // now adjust the current shape based on these predictions
for (unsigned long j = parts[i].first; j < parts[i].second; ++j) for (unsigned long j = parts[i].first; j < parts[i].second; ++j)
{
samples[j].current_shape += tree.leaf_values[i]; samples[j].current_shape += tree.leaf_values[i];
// For parts that aren't present in the training data, we just make
// sure that the target shape always matches and therefore gives zero
// error. So this makes the algorithm simply ignore non-present
// landmarks.
for (long k = 0; k < samples[j].present.size(); ++k)
{
// if this part is not present
if (samples[j].present(k) == 0)
samples[j].target_shape(k) = samples[j].current_shape(k);
}
}
} }
return tree; return tree;
...@@ -867,7 +971,7 @@ namespace dlib ...@@ -867,7 +971,7 @@ namespace dlib
{ {
samples.clear(); samples.clear();
matrix<float,0,1> mean_shape; matrix<float,0,1> mean_shape;
long count = 0; matrix<float,0,1> count;
// first fill out the target shapes // first fill out the target shapes
for (unsigned long i = 0; i < objects.size(); ++i) for (unsigned long i = 0; i < objects.size(); ++i)
{ {
...@@ -876,15 +980,15 @@ namespace dlib ...@@ -876,15 +980,15 @@ namespace dlib
training_sample sample; training_sample sample;
sample.image_idx = i; sample.image_idx = i;
sample.rect = objects[i][j].get_rect(); sample.rect = objects[i][j].get_rect();
sample.target_shape = object_to_shape(objects[i][j]); object_to_shape(objects[i][j], sample.target_shape, sample.present);
for (unsigned long itr = 0; itr < get_oversampling_amount(); ++itr) for (unsigned long itr = 0; itr < get_oversampling_amount(); ++itr)
samples.push_back(sample); samples.push_back(sample);
mean_shape += sample.target_shape; mean_shape += sample.target_shape;
++count; count += sample.present;
} }
} }
mean_shape /= count; mean_shape = pointwise_multiply(mean_shape,reciprocal(count));
// now go pick random initial shapes // now go pick random initial shapes
for (unsigned long i = 0; i < samples.size(); ++i) for (unsigned long i = 0; i < samples.size(); ++i)
...@@ -897,12 +1001,35 @@ namespace dlib ...@@ -897,12 +1001,35 @@ namespace dlib
} }
else else
{ {
// Pick a random convex combination of two of the target shapes and use samples[i].current_shape.set_size(0);
// that as the initial shape for this sample.
matrix<float,0,1> hits(mean_shape.size());
hits = 0;
int iter = 0;
// Pick a few samples at random and randomly average them together to
// make the initial shape. Note that we make sure we get at least one
// observation (i.e. non-OBJECT_PART_NOT_PRESENT) on each part
// location.
while(min(hits) == 0 || iter < 2)
{
++iter;
const unsigned long rand_idx = rnd.get_random_32bit_number()%samples.size(); const unsigned long rand_idx = rnd.get_random_32bit_number()%samples.size();
const unsigned long rand_idx2 = rnd.get_random_32bit_number()%samples.size(); const double alpha = rnd.get_random_double()+0.1;
const double alpha = rnd.get_random_double(); samples[i].current_shape += alpha*samples[rand_idx].target_shape;
samples[i].current_shape = alpha*samples[rand_idx].target_shape + (1-alpha)*samples[rand_idx2].target_shape; hits += alpha*samples[rand_idx].present;
}
samples[i].current_shape = pointwise_multiply(samples[i].current_shape, reciprocal(hits));
}
}
for (unsigned long i = 0; i < samples.size(); ++i)
{
for (long k = 0; k < samples[i].present.size(); ++k)
{
// if this part is not present
if (samples[i].present(k) == 0)
samples[i].target_shape(k) = samples[i].current_shape(k);
} }
} }
...@@ -1028,12 +1155,15 @@ namespace dlib ...@@ -1028,12 +1155,15 @@ namespace dlib
full_object_detection det = sp(images[i], objects[i][j].get_rect()); full_object_detection det = sp(images[i], objects[i][j].get_rect());
for (unsigned long k = 0; k < det.num_parts(); ++k) for (unsigned long k = 0; k < det.num_parts(); ++k)
{
if (objects[i][j].part(k) != OBJECT_PART_NOT_PRESENT)
{ {
double score = length(det.part(k) - objects[i][j].part(k))/scale; double score = length(det.part(k) - objects[i][j].part(k))/scale;
rs.add(score); rs.add(score);
} }
} }
} }
}
return rs.mean(); return rs.mean();
} }
......
...@@ -42,6 +42,7 @@ namespace dlib ...@@ -42,6 +42,7 @@ namespace dlib
/*! /*!
ensures ensures
- #num_parts() == 0 - #num_parts() == 0
- #num_features() == 0
!*/ !*/
unsigned long num_parts ( unsigned long num_parts (
...@@ -51,15 +52,27 @@ namespace dlib ...@@ -51,15 +52,27 @@ namespace dlib
- returns the number of parts in the shapes predicted by this object. - returns the number of parts in the shapes predicted by this object.
!*/ !*/
template <typename image_type> unsigned long num_features (
) const;
/*!
ensures
- Returns the dimensionality of the feature vector output by operator().
This number is the total number of trees in this object times the number
of leaves on each tree.
!*/
template <typename image_type, typename T, typename U>
full_object_detection operator()( full_object_detection operator()(
const image_type& img, const image_type& img,
const rectangle& rect const rectangle& rect,
std::vector<std::pair<T,U> >& feats
) const; ) const;
/*! /*!
requires requires
- image_type == an image object that implements the interface defined in - image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h dlib/image_processing/generic_image.h
- T is some unsigned integral type (e.g. unsigned int).
- U is any scalar type capable of storing the value 1 (e.g. float).
ensures ensures
- Runs the shape prediction algorithm on the part of the image contained in - Runs the shape prediction algorithm on the part of the image contained in
the given bounding rectangle. So it will try and fit the shape model to the given bounding rectangle. So it will try and fit the shape model to
...@@ -73,6 +86,29 @@ namespace dlib ...@@ -73,6 +86,29 @@ namespace dlib
- for all valid i: - for all valid i:
- DET.part(i) == the location in img for the i-th part of the shape - DET.part(i) == the location in img for the i-th part of the shape
predicted by this object. predicted by this object.
- #feats == a sparse vector that records which leaf each tree used to make
the shape prediction. Moreover, it is an indicator vector, Therefore,
for all valid i:
- #feats[i].second == 1
Further, #feats is a vector from the space of num_features() dimensional
vectors. The output shape positions can be represented as the dot
product between #feats and a weight vector. Therefore, #feats encodes
all the information from img that was used to predict the returned shape
object.
!*/
template <typename image_type>
full_object_detection operator()(
const image_type& img,
const rectangle& rect
) const;
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- Calling this function is equivalent to calling (*this)(img, rect, ignored)
where the 3d argument is discarded.
!*/ !*/
}; };
...@@ -359,6 +395,9 @@ namespace dlib ...@@ -359,6 +395,9 @@ namespace dlib
- images.size() > 0 - images.size() > 0
- for some i: objects[i].size() != 0 - for some i: objects[i].size() != 0
(i.e. there has to be at least one full_object_detection in the training set) (i.e. there has to be at least one full_object_detection in the training set)
- for all valid p, there must exist i and j such that:
objects[i][j].part(p) != OBJECT_PART_NOT_PRESENT.
(i.e. You can't define a part that is always set to OBJECT_PART_NOT_PRESENT.)
- for all valid i,j,k,l: - for all valid i,j,k,l:
- objects[i][j].num_parts() == objects[k][l].num_parts() - objects[i][j].num_parts() == objects[k][l].num_parts()
(i.e. all objects must agree on the number of parts) (i.e. all objects must agree on the number of parts)
...@@ -370,6 +409,10 @@ namespace dlib ...@@ -370,6 +409,10 @@ namespace dlib
shape_predictor, SP, such that: shape_predictor, SP, such that:
SP(images[i], objects[i][j].get_rect()) == objects[i][j] SP(images[i], objects[i][j].get_rect()) == objects[i][j]
This learned SP object is then returned. This learned SP object is then returned.
- Not all parts are required to be observed for all objects. So if you
have training instances with missing parts then set the part positions
equal to OBJECT_PART_NOT_PRESENT and this algorithm will basically ignore
those missing parts.
!*/ !*/
}; };
...@@ -408,6 +451,8 @@ namespace dlib ...@@ -408,6 +451,8 @@ namespace dlib
and compare the result with the truth part positions in objects[i][j]. We and compare the result with the truth part positions in objects[i][j]. We
then return the average distance (measured in pixels) between a predicted then return the average distance (measured in pixels) between a predicted
part location and its true position. part location and its true position.
- Note that any parts in objects that are set to OBJECT_PART_NOT_PRESENT are
simply ignored.
- if (scales.size() != 0) then - if (scales.size() != 0) then
- Each time we compute the distance between a predicted part location and - Each time we compute the distance between a predicted part location and
its true location in objects[i][j] we divide the distance by its true location in objects[i][j] we divide the distance by
......
...@@ -288,7 +288,7 @@ namespace dlib ...@@ -288,7 +288,7 @@ namespace dlib
struct dlib_pick_initial_centers_data struct dlib_pick_initial_centers_data
{ {
dlib_pick_initial_centers_data():idx(0), dist(1e200){} dlib_pick_initial_centers_data():idx(0), dist(std::numeric_limits<double>::infinity()){}
long idx; long idx;
double dist; double dist;
bool operator< (const dlib_pick_initial_centers_data& d) const { return dist < d.dist; } bool operator< (const dlib_pick_initial_centers_data& d) const { return dist < d.dist; }
...@@ -331,7 +331,7 @@ namespace dlib ...@@ -331,7 +331,7 @@ namespace dlib
// pick the first sample as one of the centers // pick the first sample as one of the centers
centers.push_back(samples[0]); centers.push_back(samples[0]);
const long best_idx = static_cast<long>(samples.size() - samples.size()*percentile - 1); const long best_idx = static_cast<long>(std::max(0.0,samples.size() - samples.size()*percentile - 1));
// pick the next center // pick the next center
for (long i = 0; i < num_centers-1; ++i) for (long i = 0; i < num_centers-1; ++i)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment