Commit c42fdead authored by Davis King's avatar Davis King

Made the shape_predictor output a sparse feature vector that encodes

which leafs are used on each tree to make a prediction.
parent ad97e1f3
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include "../geometry.h" #include "../geometry.h"
#include "../pixel.h" #include "../pixel.h"
#include "../console_progress_indicator.h" #include "../console_progress_indicator.h"
#include <utility>
namespace dlib namespace dlib
{ {
...@@ -57,8 +58,11 @@ namespace dlib ...@@ -57,8 +58,11 @@ namespace dlib
std::vector<split_feature> splits; std::vector<split_feature> splits;
std::vector<matrix<float,0,1> > leaf_values; std::vector<matrix<float,0,1> > leaf_values;
unsigned long num_leaves() const { return leaf_values.size(); }
inline const matrix<float,0,1>& operator()( inline const matrix<float,0,1>& operator()(
const std::vector<float>& feature_pixel_values const std::vector<float>& feature_pixel_values,
unsigned long& i
) const ) const
/*! /*!
requires requires
...@@ -69,9 +73,10 @@ namespace dlib ...@@ -69,9 +73,10 @@ namespace dlib
(i.e. there needs to be the right number of leaves given the number of splits in the tree) (i.e. there needs to be the right number of leaves given the number of splits in the tree)
ensures ensures
- runs through the tree and returns the vector at the leaf we end up in. - runs through the tree and returns the vector at the leaf we end up in.
- #i == the selected leaf node index.
!*/ !*/
{ {
unsigned long i = 0; i = 0;
while (i < splits.size()) while (i < splits.size())
{ {
if (feature_pixel_values[splits[i].idx1] - feature_pixel_values[splits[i].idx2] > splits[i].thresh) if (feature_pixel_values[splits[i].idx1] - feature_pixel_values[splits[i].idx2] > splits[i].thresh)
...@@ -79,7 +84,8 @@ namespace dlib ...@@ -79,7 +84,8 @@ namespace dlib
else else
i = right_child(i); i = right_child(i);
} }
return leaf_values[i - splits.size()]; i = i - splits.size();
return leaf_values[i];
} }
friend void serialize (const regression_tree& item, std::ostream& out) friend void serialize (const regression_tree& item, std::ostream& out)
...@@ -319,6 +325,16 @@ namespace dlib ...@@ -319,6 +325,16 @@ namespace dlib
return initial_shape.size()/2; return initial_shape.size()/2;
} }
unsigned long num_features (
) const
{
unsigned long num = 0;
for (unsigned long iter = 0; iter < forests.size(); ++iter)
for (unsigned long i = 0; i < forests[iter].size(); ++i)
num += forests[iter][i].num_leaves();
return num;
}
template <typename image_type> template <typename image_type>
full_object_detection operator()( full_object_detection operator()(
const image_type& img, const image_type& img,
...@@ -330,10 +346,47 @@ namespace dlib ...@@ -330,10 +346,47 @@ namespace dlib
std::vector<float> feature_pixel_values; std::vector<float> feature_pixel_values;
for (unsigned long iter = 0; iter < forests.size(); ++iter) for (unsigned long iter = 0; iter < forests.size(); ++iter)
{ {
extract_feature_pixel_values(img, rect, current_shape, initial_shape, anchor_idx[iter], deltas[iter], feature_pixel_values); extract_feature_pixel_values(img, rect, current_shape, initial_shape,
anchor_idx[iter], deltas[iter], feature_pixel_values);
unsigned long leaf_idx;
// evaluate all the trees at this level of the cascade.
for (unsigned long i = 0; i < forests[iter].size(); ++i)
current_shape += forests[iter][i](feature_pixel_values, leaf_idx);
}
// convert the current_shape into a full_object_detection
const point_transform_affine tform_to_img = unnormalizing_tform(rect);
std::vector<point> parts(current_shape.size()/2);
for (unsigned long i = 0; i < parts.size(); ++i)
parts[i] = tform_to_img(location(current_shape, i));
return full_object_detection(rect, parts);
}
template <typename image_type, typename T, typename U>
full_object_detection operator()(
const image_type& img,
const rectangle& rect,
std::vector<std::pair<T,U> >& feats
) const
{
feats.clear();
using namespace impl;
matrix<float,0,1> current_shape = initial_shape;
std::vector<float> feature_pixel_values;
unsigned long feat_offset = 0;
for (unsigned long iter = 0; iter < forests.size(); ++iter)
{
extract_feature_pixel_values(img, rect, current_shape, initial_shape,
anchor_idx[iter], deltas[iter], feature_pixel_values);
// evaluate all the trees at this level of the cascade. // evaluate all the trees at this level of the cascade.
for (unsigned long i = 0; i < forests[iter].size(); ++i) for (unsigned long i = 0; i < forests[iter].size(); ++i)
current_shape += forests[iter][i](feature_pixel_values); {
unsigned long leaf_idx;
current_shape += forests[iter][i](feature_pixel_values, leaf_idx);
feats.push_back(std::make_pair(feat_offset+leaf_idx, 1));
feat_offset += forests[iter][i].num_leaves();
}
} }
// convert the current_shape into a full_object_detection // convert the current_shape into a full_object_detection
......
...@@ -42,6 +42,7 @@ namespace dlib ...@@ -42,6 +42,7 @@ namespace dlib
/*! /*!
ensures ensures
- #num_parts() == 0 - #num_parts() == 0
- #num_features() == 0
!*/ !*/
unsigned long num_parts ( unsigned long num_parts (
...@@ -51,15 +52,27 @@ namespace dlib ...@@ -51,15 +52,27 @@ namespace dlib
- returns the number of parts in the shapes predicted by this object. - returns the number of parts in the shapes predicted by this object.
!*/ !*/
template <typename image_type> unsigned long num_features (
) const;
/*!
ensures
- Returns the dimensionality of the feature vector output by operator().
This number is the total number of trees in this object times the number
of leaves on each tree.
!*/
template <typename image_type, typename T, typename U>
full_object_detection operator()( full_object_detection operator()(
const image_type& img, const image_type& img,
const rectangle& rect const rectangle& rect,
std::vector<std::pair<T,U> >& feats
) const; ) const;
/*! /*!
requires requires
- image_type == an image object that implements the interface defined in - image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h dlib/image_processing/generic_image.h
- T is some unsigned integral type (e.g. unsigned int).
- U is any scalar type capable of storing the value 1 (e.g. float).
ensures ensures
- Runs the shape prediction algorithm on the part of the image contained in - Runs the shape prediction algorithm on the part of the image contained in
the given bounding rectangle. So it will try and fit the shape model to the given bounding rectangle. So it will try and fit the shape model to
...@@ -73,6 +86,29 @@ namespace dlib ...@@ -73,6 +86,29 @@ namespace dlib
- for all valid i: - for all valid i:
- DET.part(i) == the location in img for the i-th part of the shape - DET.part(i) == the location in img for the i-th part of the shape
predicted by this object. predicted by this object.
- #feats == a sparse vector that records which leaf each tree used to make
the shape prediction. Moreover, it is an indicator vector, Therefore,
for all valid i:
- #feats[i].second == 1
Further, #feats is a vector from the space of num_features() dimensional
vectors. The output shape positions can be represented as the dot
product between #feats and a weight vector. Therefore, #feats encodes
all the information from img that was used to predict the returned shape
object.
!*/
template <typename image_type>
full_object_detection operator()(
const image_type& img,
const rectangle& rect
) const;
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- Calling this function is equivalent to calling (*this)(img, rect, ignored)
where the 3d argument is discarded.
!*/ !*/
}; };
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment