Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
c42fdead
Commit
c42fdead
authored
Jul 14, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Made the shape_predictor output a sparse feature vector that encodes
which leafs are used on each tree to make a prediction.
parent
ad97e1f3
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
96 additions
and
7 deletions
+96
-7
shape_predictor.h
dlib/image_processing/shape_predictor.h
+58
-5
shape_predictor_abstract.h
dlib/image_processing/shape_predictor_abstract.h
+38
-2
No files found.
dlib/image_processing/shape_predictor.h
View file @
c42fdead
...
...
@@ -10,6 +10,7 @@
#include "../geometry.h"
#include "../pixel.h"
#include "../console_progress_indicator.h"
#include <utility>
namespace
dlib
{
...
...
@@ -57,8 +58,11 @@ namespace dlib
std
::
vector
<
split_feature
>
splits
;
std
::
vector
<
matrix
<
float
,
0
,
1
>
>
leaf_values
;
unsigned
long
num_leaves
()
const
{
return
leaf_values
.
size
();
}
inline
const
matrix
<
float
,
0
,
1
>&
operator
()(
const
std
::
vector
<
float
>&
feature_pixel_values
const
std
::
vector
<
float
>&
feature_pixel_values
,
unsigned
long
&
i
)
const
/*!
requires
...
...
@@ -69,9 +73,10 @@ namespace dlib
(i.e. there needs to be the right number of leaves given the number of splits in the tree)
ensures
- runs through the tree and returns the vector at the leaf we end up in.
- #i == the selected leaf node index.
!*/
{
unsigned
long
i
=
0
;
i
=
0
;
while
(
i
<
splits
.
size
())
{
if
(
feature_pixel_values
[
splits
[
i
].
idx1
]
-
feature_pixel_values
[
splits
[
i
].
idx2
]
>
splits
[
i
].
thresh
)
...
...
@@ -79,7 +84,8 @@ namespace dlib
else
i
=
right_child
(
i
);
}
return
leaf_values
[
i
-
splits
.
size
()];
i
=
i
-
splits
.
size
();
return
leaf_values
[
i
];
}
friend
void
serialize
(
const
regression_tree
&
item
,
std
::
ostream
&
out
)
...
...
@@ -319,6 +325,16 @@ namespace dlib
return
initial_shape
.
size
()
/
2
;
}
unsigned
long
num_features
(
)
const
{
unsigned
long
num
=
0
;
for
(
unsigned
long
iter
=
0
;
iter
<
forests
.
size
();
++
iter
)
for
(
unsigned
long
i
=
0
;
i
<
forests
[
iter
].
size
();
++
i
)
num
+=
forests
[
iter
][
i
].
num_leaves
();
return
num
;
}
template
<
typename
image_type
>
full_object_detection
operator
()(
const
image_type
&
img
,
...
...
@@ -330,10 +346,47 @@ namespace dlib
std
::
vector
<
float
>
feature_pixel_values
;
for
(
unsigned
long
iter
=
0
;
iter
<
forests
.
size
();
++
iter
)
{
extract_feature_pixel_values
(
img
,
rect
,
current_shape
,
initial_shape
,
anchor_idx
[
iter
],
deltas
[
iter
],
feature_pixel_values
);
extract_feature_pixel_values
(
img
,
rect
,
current_shape
,
initial_shape
,
anchor_idx
[
iter
],
deltas
[
iter
],
feature_pixel_values
);
unsigned
long
leaf_idx
;
// evaluate all the trees at this level of the cascade.
for
(
unsigned
long
i
=
0
;
i
<
forests
[
iter
].
size
();
++
i
)
current_shape
+=
forests
[
iter
][
i
](
feature_pixel_values
,
leaf_idx
);
}
// convert the current_shape into a full_object_detection
const
point_transform_affine
tform_to_img
=
unnormalizing_tform
(
rect
);
std
::
vector
<
point
>
parts
(
current_shape
.
size
()
/
2
);
for
(
unsigned
long
i
=
0
;
i
<
parts
.
size
();
++
i
)
parts
[
i
]
=
tform_to_img
(
location
(
current_shape
,
i
));
return
full_object_detection
(
rect
,
parts
);
}
template
<
typename
image_type
,
typename
T
,
typename
U
>
full_object_detection
operator
()(
const
image_type
&
img
,
const
rectangle
&
rect
,
std
::
vector
<
std
::
pair
<
T
,
U
>
>&
feats
)
const
{
feats
.
clear
();
using
namespace
impl
;
matrix
<
float
,
0
,
1
>
current_shape
=
initial_shape
;
std
::
vector
<
float
>
feature_pixel_values
;
unsigned
long
feat_offset
=
0
;
for
(
unsigned
long
iter
=
0
;
iter
<
forests
.
size
();
++
iter
)
{
extract_feature_pixel_values
(
img
,
rect
,
current_shape
,
initial_shape
,
anchor_idx
[
iter
],
deltas
[
iter
],
feature_pixel_values
);
// evaluate all the trees at this level of the cascade.
for
(
unsigned
long
i
=
0
;
i
<
forests
[
iter
].
size
();
++
i
)
current_shape
+=
forests
[
iter
][
i
](
feature_pixel_values
);
{
unsigned
long
leaf_idx
;
current_shape
+=
forests
[
iter
][
i
](
feature_pixel_values
,
leaf_idx
);
feats
.
push_back
(
std
::
make_pair
(
feat_offset
+
leaf_idx
,
1
));
feat_offset
+=
forests
[
iter
][
i
].
num_leaves
();
}
}
// convert the current_shape into a full_object_detection
...
...
dlib/image_processing/shape_predictor_abstract.h
View file @
c42fdead
...
...
@@ -42,6 +42,7 @@ namespace dlib
/*!
ensures
- #num_parts() == 0
- #num_features() == 0
!*/
unsigned
long
num_parts
(
...
...
@@ -51,15 +52,27 @@ namespace dlib
- returns the number of parts in the shapes predicted by this object.
!*/
template
<
typename
image_type
>
unsigned
long
num_features
(
)
const
;
/*!
ensures
- Returns the dimensionality of the feature vector output by operator().
This number is the total number of trees in this object times the number
of leaves on each tree.
!*/
template
<
typename
image_type
,
typename
T
,
typename
U
>
full_object_detection
operator
()(
const
image_type
&
img
,
const
rectangle
&
rect
const
rectangle
&
rect
,
std
::
vector
<
std
::
pair
<
T
,
U
>
>&
feats
)
const
;
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
- T is some unsigned integral type (e.g. unsigned int).
- U is any scalar type capable of storing the value 1 (e.g. float).
ensures
- Runs the shape prediction algorithm on the part of the image contained in
the given bounding rectangle. So it will try and fit the shape model to
...
...
@@ -73,6 +86,29 @@ namespace dlib
- for all valid i:
- DET.part(i) == the location in img for the i-th part of the shape
predicted by this object.
- #feats == a sparse vector that records which leaf each tree used to make
the shape prediction. Moreover, it is an indicator vector, Therefore,
for all valid i:
- #feats[i].second == 1
Further, #feats is a vector from the space of num_features() dimensional
vectors. The output shape positions can be represented as the dot
product between #feats and a weight vector. Therefore, #feats encodes
all the information from img that was used to predict the returned shape
object.
!*/
template
<
typename
image_type
>
full_object_detection
operator
()(
const
image_type
&
img
,
const
rectangle
&
rect
)
const
;
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- Calling this function is equivalent to calling (*this)(img, rect, ignored)
where the 3d argument is discarded.
!*/
};
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment