Commit 825ae091 authored by Davis King's avatar Davis King

merged

parents f1c734d6 c42fdead
...@@ -59,7 +59,9 @@ namespace dlib ...@@ -59,7 +59,9 @@ namespace dlib
for (long r = 0; r < v.nr(); ++r) for (long r = 0; r < v.nr(); ++r)
{ {
spec_samps.push_back(trans(rowm(v,r))); spec_samps.push_back(trans(rowm(v,r)));
spec_samps.back() /= length(spec_samps.back()); const double len = length(spec_samps.back());
if (len != 0)
spec_samps.back() /= len;
} }
// Finally do the K-means clustering // Finally do the K-means clustering
pick_initial_centers(num_clusters, centers, spec_samps); pick_initial_centers(num_clusters, centers, spec_samps);
......
...@@ -341,7 +341,7 @@ namespace dlib ...@@ -341,7 +341,7 @@ namespace dlib
boxes_overlap(overlap_tester) boxes_overlap(overlap_tester)
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(scanner_.get_num_detection_templates() > 0 && w_.size() > 0, DLIB_CASSERT(scanner_.get_num_detection_templates() > 0 && w_.size() > 0,
"\t object_detector::object_detector(scanner_,overlap_tester,w_)" "\t object_detector::object_detector(scanner_,overlap_tester,w_)"
<< "\n\t Invalid inputs were given to this function " << "\n\t Invalid inputs were given to this function "
<< "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates() << "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates()
...@@ -349,10 +349,9 @@ namespace dlib ...@@ -349,10 +349,9 @@ namespace dlib
<< "\n\t this: " << this << "\n\t this: " << this
); );
#ifdef ENABLE_ASSERTS
for (unsigned long i = 0; i < w_.size(); ++i) for (unsigned long i = 0; i < w_.size(); ++i)
{ {
DLIB_ASSERT(w_[i].size() == scanner_.get_num_dimensions() + 1, DLIB_CASSERT(w_[i].size() == scanner_.get_num_dimensions() + 1,
"\t object_detector::object_detector(scanner_,overlap_tester,w_)" "\t object_detector::object_detector(scanner_,overlap_tester,w_)"
<< "\n\t Invalid inputs were given to this function " << "\n\t Invalid inputs were given to this function "
<< "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates() << "\n\t scanner_.get_num_detection_templates(): " << scanner_.get_num_detection_templates()
...@@ -361,7 +360,6 @@ namespace dlib ...@@ -361,7 +360,6 @@ namespace dlib
<< "\n\t this: " << this << "\n\t this: " << this
); );
} }
#endif
scanner.copy_configuration(scanner_); scanner.copy_configuration(scanner_);
w.resize(w_.size()); w.resize(w_.size());
...@@ -382,7 +380,7 @@ namespace dlib ...@@ -382,7 +380,7 @@ namespace dlib
const std::vector<object_detector>& detectors const std::vector<object_detector>& detectors
) )
{ {
DLIB_ASSERT(detectors.size() != 0, DLIB_CASSERT(detectors.size() != 0,
"\t object_detector::object_detector(detectors)" "\t object_detector::object_detector(detectors)"
<< "\n\t Invalid inputs were given to this function " << "\n\t Invalid inputs were given to this function "
<< "\n\t this: " << this << "\n\t this: " << this
......
This diff is collapsed.
...@@ -42,6 +42,7 @@ namespace dlib ...@@ -42,6 +42,7 @@ namespace dlib
/*! /*!
ensures ensures
- #num_parts() == 0 - #num_parts() == 0
- #num_features() == 0
!*/ !*/
unsigned long num_parts ( unsigned long num_parts (
...@@ -51,15 +52,27 @@ namespace dlib ...@@ -51,15 +52,27 @@ namespace dlib
- returns the number of parts in the shapes predicted by this object. - returns the number of parts in the shapes predicted by this object.
!*/ !*/
template <typename image_type> unsigned long num_features (
) const;
/*!
ensures
- Returns the dimensionality of the feature vector output by operator().
This number is the total number of trees in this object times the number
of leaves on each tree.
!*/
template <typename image_type, typename T, typename U>
full_object_detection operator()( full_object_detection operator()(
const image_type& img, const image_type& img,
const rectangle& rect const rectangle& rect,
std::vector<std::pair<T,U> >& feats
) const; ) const;
/*! /*!
requires requires
- image_type == an image object that implements the interface defined in - image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h dlib/image_processing/generic_image.h
- T is some unsigned integral type (e.g. unsigned int).
- U is any scalar type capable of storing the value 1 (e.g. float).
ensures ensures
- Runs the shape prediction algorithm on the part of the image contained in - Runs the shape prediction algorithm on the part of the image contained in
the given bounding rectangle. So it will try and fit the shape model to the given bounding rectangle. So it will try and fit the shape model to
...@@ -73,6 +86,29 @@ namespace dlib ...@@ -73,6 +86,29 @@ namespace dlib
- for all valid i: - for all valid i:
- DET.part(i) == the location in img for the i-th part of the shape - DET.part(i) == the location in img for the i-th part of the shape
predicted by this object. predicted by this object.
- #feats == a sparse vector that records which leaf each tree used to make
the shape prediction. Moreover, it is an indicator vector, Therefore,
for all valid i:
- #feats[i].second == 1
Further, #feats is a vector from the space of num_features() dimensional
vectors. The output shape positions can be represented as the dot
product between #feats and a weight vector. Therefore, #feats encodes
all the information from img that was used to predict the returned shape
object.
!*/
template <typename image_type>
full_object_detection operator()(
const image_type& img,
const rectangle& rect
) const;
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- Calling this function is equivalent to calling (*this)(img, rect, ignored)
where the 3d argument is discarded.
!*/ !*/
}; };
...@@ -359,6 +395,9 @@ namespace dlib ...@@ -359,6 +395,9 @@ namespace dlib
- images.size() > 0 - images.size() > 0
- for some i: objects[i].size() != 0 - for some i: objects[i].size() != 0
(i.e. there has to be at least one full_object_detection in the training set) (i.e. there has to be at least one full_object_detection in the training set)
- for all valid p, there must exist i and j such that:
objects[i][j].part(p) != OBJECT_PART_NOT_PRESENT.
(i.e. You can't define a part that is always set to OBJECT_PART_NOT_PRESENT.)
- for all valid i,j,k,l: - for all valid i,j,k,l:
- objects[i][j].num_parts() == objects[k][l].num_parts() - objects[i][j].num_parts() == objects[k][l].num_parts()
(i.e. all objects must agree on the number of parts) (i.e. all objects must agree on the number of parts)
...@@ -370,6 +409,10 @@ namespace dlib ...@@ -370,6 +409,10 @@ namespace dlib
shape_predictor, SP, such that: shape_predictor, SP, such that:
SP(images[i], objects[i][j].get_rect()) == objects[i][j] SP(images[i], objects[i][j].get_rect()) == objects[i][j]
This learned SP object is then returned. This learned SP object is then returned.
- Not all parts are required to be observed for all objects. So if you
have training instances with missing parts then set the part positions
equal to OBJECT_PART_NOT_PRESENT and this algorithm will basically ignore
those missing parts.
!*/ !*/
}; };
...@@ -408,6 +451,8 @@ namespace dlib ...@@ -408,6 +451,8 @@ namespace dlib
and compare the result with the truth part positions in objects[i][j]. We and compare the result with the truth part positions in objects[i][j]. We
then return the average distance (measured in pixels) between a predicted then return the average distance (measured in pixels) between a predicted
part location and its true position. part location and its true position.
- Note that any parts in objects that are set to OBJECT_PART_NOT_PRESENT are
simply ignored.
- if (scales.size() != 0) then - if (scales.size() != 0) then
- Each time we compute the distance between a predicted part location and - Each time we compute the distance between a predicted part location and
its true location in objects[i][j] we divide the distance by its true location in objects[i][j] we divide the distance by
......
...@@ -288,7 +288,7 @@ namespace dlib ...@@ -288,7 +288,7 @@ namespace dlib
struct dlib_pick_initial_centers_data struct dlib_pick_initial_centers_data
{ {
dlib_pick_initial_centers_data():idx(0), dist(1e200){} dlib_pick_initial_centers_data():idx(0), dist(std::numeric_limits<double>::infinity()){}
long idx; long idx;
double dist; double dist;
bool operator< (const dlib_pick_initial_centers_data& d) const { return dist < d.dist; } bool operator< (const dlib_pick_initial_centers_data& d) const { return dist < d.dist; }
...@@ -331,7 +331,7 @@ namespace dlib ...@@ -331,7 +331,7 @@ namespace dlib
// pick the first sample as one of the centers // pick the first sample as one of the centers
centers.push_back(samples[0]); centers.push_back(samples[0]);
const long best_idx = static_cast<long>(samples.size() - samples.size()*percentile - 1); const long best_idx = static_cast<long>(std::max(0.0,samples.size() - samples.size()*percentile - 1));
// pick the next center // pick the next center
for (long i = 0; i < num_centers-1; ++i) for (long i = 0; i < num_centers-1; ++i)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment