Commit 8296869b authored by Davis King's avatar Davis King

Added initial version of the learning to track example program.

parent 26613862
...@@ -47,6 +47,7 @@ add_example(krls_ex) ...@@ -47,6 +47,7 @@ add_example(krls_ex)
add_example(krls_filter_ex) add_example(krls_filter_ex)
add_example(krr_classification_ex) add_example(krr_classification_ex)
add_example(krr_regression_ex) add_example(krr_regression_ex)
add_example(learning_to_track_ex)
add_example(least_squares_ex) add_example(least_squares_ex)
add_example(linear_manifold_regularizer_ex) add_example(linear_manifold_regularizer_ex)
add_example(logger_ex) add_example(logger_ex)
......
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
*/
#include <iostream>
#include <dlib/svm_threaded.h>
#include <dlib/rand.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
class detection
{
public:
typedef class track track_type;
matrix<double,0,1> measurements;
};
class track
{
public:
// This type should be a dlib::matrix capable of storing column vectors or an
// unsorted sparse vector type as defined in dlib/svm/sparse_vector_abstract.h.
typedef matrix<double,0,1> feature_vector_type;
track()
{
time_since_last_association = 0;
}
void get_similarity_features (
const detection& det,
feature_vector_type& feats
) const
{
feats = abs(last_measurements - det.measurements);
}
void update_track (
const detection& det
)
{
last_measurements = det.measurements;
time_since_last_association = 0;
}
void propagate_track (
)
{
++time_since_last_association;
}
matrix<double,0,1> last_measurements;
unsigned long time_since_last_association;
};
// ----------------------------------------------------------------------------------------
typedef std::vector<labeled_detection<detection> > detections_at_single_time_step;
typedef std::vector<detections_at_single_time_step> track_history;
dlib::rand rnd;
const long num_objects = 4;
const long num_properties = 6;
std::vector<matrix<double,0,1> > object_properties(num_objects);
void initialize_object_properties()
{
for (unsigned long i = 0; i < object_properties.size(); ++i)
object_properties[i] = randm(num_properties,1,rnd);
}
// ----------------------------------------------------------------------------------------
track_history make_random_tracking_data_for_training()
{
track_history data;
const int num_time_steps = 100;
for (int i = 0; i < num_time_steps; ++i)
{
detections_at_single_time_step dets(3);
dets[0].det.measurements = object_properties[0] + randm(num_properties,1,rnd)*0.1;
dets[0].label = 0;
dets[1].det.measurements = object_properties[1] + randm(num_properties,1,rnd)*0.1;
dets[1].label = 1;
dets[2].det.measurements = object_properties[2] + randm(num_properties,1,rnd)*0.1;
dets[2].label = 2;
data.push_back(dets);
}
for (int i = 0; i < num_time_steps; ++i)
{
detections_at_single_time_step dets(2);
dets[0].det.measurements = object_properties[0] + randm(num_properties,1,rnd)*0.1;
dets[0].label = 0;
dets[1].det.measurements = object_properties[3] + randm(num_properties,1,rnd)*0.1;
dets[1].label = 3;
data.push_back(dets);
}
return data;
}
// ----------------------------------------------------------------------------------------
std::vector<detection> make_random_detections(unsigned long num_dets)
{
std::vector<detection> dets(num_dets);
for (unsigned long i = 0; i < dets.size(); ++i)
{
dets[i].measurements = object_properties[i] + randm(num_properties,1,rnd)*0.1;
}
return dets;
}
// ----------------------------------------------------------------------------------------
int main()
{
initialize_object_properties();
std::vector<track_history> data;
data.push_back(make_random_tracking_data_for_training());
data.push_back(make_random_tracking_data_for_training());
data.push_back(make_random_tracking_data_for_training());
data.push_back(make_random_tracking_data_for_training());
data.push_back(make_random_tracking_data_for_training());
structural_track_association_trainer trainer;
trainer.be_verbose();
trainer.set_c(100);
track_association_function<detection> assoc = trainer.train(data);
cout << "accuracy on training data: "<< test_track_association_function(assoc, data) << endl;
cout << "cross validation: "<< cross_validate_track_association_trainer(trainer, data, 5) << endl;
std::vector<detection> dets;
std::vector<track> tracks;
cout << "number of tracks: "<< tracks.size() << endl;
dets = make_random_detections(3);
assoc(tracks, dets);
cout << "number of tracks: "<< tracks.size() << endl;
dets = make_random_detections(3);
assoc(tracks, dets);
cout << "number of tracks: "<< tracks.size() << endl;
dets = make_random_detections(4);
assoc(tracks, dets);
cout << "number of tracks: "<< tracks.size() << endl;
dets = make_random_detections(3);
assoc(tracks, dets);
cout << "number of tracks: "<< tracks.size() << endl;
for (unsigned long i = 0; i < tracks.size(); ++i)
cout << " time since last association: "<< tracks[i].time_since_last_association << endl;
dets = make_random_detections(3);
assoc(tracks, dets);
cout << "number of tracks: "<< tracks.size() << endl;
for (unsigned long i = 0; i < tracks.size(); ++i)
cout << " time since last association: "<< tracks[i].time_since_last_association << endl;
ofstream fout("track_assoc.svm", ios::binary);
serialize(assoc, fout);
fout.close();
ifstream fin("track_assoc.svm", ios::binary);
deserialize(assoc, fin);
}
// ----------------------------------------------------------------------------------------
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment