Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
87113b61
Commit
87113b61
authored
Apr 11, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Plain Diff
merged
parents
35140198
08a95a42
Hide whitespace changes
Inline
Side-by-side
Showing
22 changed files
with
968 additions
and
94 deletions
+968
-94
graph_utils.h
dlib/graph_utils/graph_utils.h
+94
-30
graph_utils_abstract.h
dlib/graph_utils/graph_utils_abstract.h
+36
-0
matrix_utilities.h
dlib/matrix/matrix_utilities.h
+74
-0
matrix_utilities_abstract.h
dlib/matrix/matrix_utilities_abstract.h
+36
-0
find_max_factor_graph_nmplp_abstract.h
dlib/optimization/find_max_factor_graph_nmplp_abstract.h
+1
-0
optimization_oca.h
dlib/optimization/optimization_oca.h
+30
-31
optimization_oca_abstract.h
dlib/optimization/optimization_oca_abstract.h
+8
-2
optimization_solve_qp_using_smo.h
dlib/optimization/optimization_solve_qp_using_smo.h
+171
-1
optimization_solve_qp_using_smo_abstract.h
dlib/optimization/optimization_solve_qp_using_smo_abstract.h
+51
-0
svm_c_linear_trainer.h
dlib/svm/svm_c_linear_trainer.h
+4
-1
CMakeLists.txt
dlib/test/CMakeLists.txt
+1
-0
makefile
dlib/test/makefile
+1
-0
matrix4.cpp
dlib/test/matrix4.cpp
+25
-0
oca.cpp
dlib/test/oca.cpp
+84
-0
opt_qp_solver.cpp
dlib/test/opt_qp_solver.cpp
+288
-0
compile.xml
docs/docs/compile.xml
+6
-9
containers.xml
docs/docs/containers.xml
+8
-0
index.xml
docs/docs/index.xml
+2
-1
optimization.xml
docs/docs/optimization.xml
+25
-1
release_notes.xml
docs/docs/release_notes.xml
+6
-3
term_index.xml
docs/docs/term_index.xml
+3
-0
train_object_detector.cpp
examples/train_object_detector.cpp
+14
-15
No files found.
dlib/graph_utils/graph_utils.h
View file @
87113b61
...
...
@@ -19,64 +19,128 @@ namespace dlib
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
typename
T
::
edge_
type
&
edge
(
typename
enable_if
<
is_graph
<
T
>
,
typename
T
::
edge_type
>::
type
&
edge
(
T
&
g
,
unsigned
long
idx
,
unsigned
long
n
unsigned
long
idx
_i
,
unsigned
long
idx_j
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
g
.
has_edge
(
idx
,
n
)
==
true
,
"
\t
T::edge_type& edge(g, i
,
j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
i: "
<<
idx
<<
"
\n\t
j: "
<<
n
DLIB_ASSERT
(
g
.
has_edge
(
idx
_i
,
idx_j
)
==
true
,
"
\t
T::edge_type& edge(g, i
dx_i, idx_
j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
idx_i: "
<<
idx_i
<<
"
\n\t
idx_j: "
<<
idx_j
);
for
(
unsigned
long
i
=
0
;
i
<
g
.
node
(
idx
).
number_of_neighbors
();
++
i
)
for
(
unsigned
long
i
=
0
;
i
<
g
.
node
(
idx
_i
).
number_of_neighbors
();
++
i
)
{
if
(
g
.
node
(
idx
).
neighbor
(
i
).
index
()
==
n
)
return
g
.
node
(
idx
).
edge
(
i
);
if
(
g
.
node
(
idx
_i
).
neighbor
(
i
).
index
()
==
idx_j
)
return
g
.
node
(
idx
_i
).
edge
(
i
);
}
// put this here just so compilers don't complain about a lack of
// a return here
DLIB_CASSERT
(
false
,
"
\t
T::edge_type& edge(g, i
,
j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
i: "
<<
idx
<<
"
\n\t
j: "
<<
n
"
\t
T::edge_type& edge(g, i
dx_i, idx_
j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
idx_i: "
<<
idx_i
<<
"
\n\t
idx_j: "
<<
idx_j
);
}
template
<
typename
T
>
const
typename
T
::
edge_
type
&
edge
(
const
typename
enable_if
<
is_graph
<
T
>
,
typename
T
::
edge_type
>::
type
&
edge
(
const
T
&
g
,
unsigned
long
idx
,
unsigned
long
n
unsigned
long
idx
_i
,
unsigned
long
idx_j
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
g
.
has_edge
(
idx
,
n
)
==
true
,
"
\t
T::edge_type& edge(g, i
,
j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
i: "
<<
idx
<<
"
\n\t
j: "
<<
n
DLIB_ASSERT
(
g
.
has_edge
(
idx
_i
,
idx_j
)
==
true
,
"
\t
T::edge_type& edge(g, i
dx_i, idx_
j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
idx_i: "
<<
idx_i
<<
"
\n\t
idx_j: "
<<
idx_j
);
for
(
unsigned
long
i
=
0
;
i
<
g
.
node
(
idx
).
number_of_neighbors
();
++
i
)
for
(
unsigned
long
i
=
0
;
i
<
g
.
node
(
idx
_i
).
number_of_neighbors
();
++
i
)
{
if
(
g
.
node
(
idx
).
neighbor
(
i
).
index
()
==
n
)
return
g
.
node
(
idx
).
edge
(
i
);
if
(
g
.
node
(
idx
_i
).
neighbor
(
i
).
index
()
==
idx_j
)
return
g
.
node
(
idx
_i
).
edge
(
i
);
}
// put this here just so compilers don't complain about a lack of
// a return here
DLIB_CASSERT
(
false
,
"
\t
T::edge_type& edge(g, i, j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
i: "
<<
idx
<<
"
\n\t
j: "
<<
n
"
\t
T::edge_type& edge(g, idx_i, idx_j)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
idx_i: "
<<
idx_i
<<
"
\n\t
idx_j: "
<<
idx_j
);
}
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
typename
enable_if
<
is_directed_graph
<
T
>
,
typename
T
::
edge_type
>::
type
&
edge
(
T
&
g
,
unsigned
long
parent_idx
,
unsigned
long
child_idx
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
g
.
has_edge
(
parent_idx
,
child_idx
)
==
true
,
"
\t
T::edge_type& edge(g, parent_idx, child_idx)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
parent_idx: "
<<
parent_idx
<<
"
\n\t
child_idx: "
<<
child_idx
);
for
(
unsigned
long
i
=
0
;
i
<
g
.
node
(
parent_idx
).
number_of_children
();
++
i
)
{
if
(
g
.
node
(
parent_idx
).
child
(
i
).
index
()
==
child_idx
)
return
g
.
node
(
parent_idx
).
child_edge
(
i
);
}
// put this here just so compilers don't complain about a lack of
// a return here
DLIB_CASSERT
(
false
,
"
\t
T::edge_type& edge(g, parent_idx, child_idx)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
parent_idx: "
<<
parent_idx
<<
"
\n\t
child_idx: "
<<
child_idx
);
}
template
<
typename
T
>
const
typename
enable_if
<
is_directed_graph
<
T
>
,
typename
T
::
edge_type
>::
type
&
edge
(
const
T
&
g
,
unsigned
long
parent_idx
,
unsigned
long
child_idx
)
{
// make sure requires clause is not broken
DLIB_ASSERT
(
g
.
has_edge
(
parent_idx
,
child_idx
)
==
true
,
"
\t
T::edge_type& edge(g, parent_idx, child_idx)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
parent_idx: "
<<
parent_idx
<<
"
\n\t
child_idx: "
<<
child_idx
);
for
(
unsigned
long
i
=
0
;
i
<
g
.
node
(
parent_idx
).
number_of_children
();
++
i
)
{
if
(
g
.
node
(
parent_idx
).
child
(
i
).
index
()
==
child_idx
)
return
g
.
node
(
parent_idx
).
child_edge
(
i
);
}
// put this here just so compilers don't complain about a lack of
// a return here
DLIB_ASSERT
(
false
,
"
\t
T::edge_type& edge(g, parent_idx, child_idx)"
<<
"
\n\t
you have requested an invalid edge"
<<
"
\n\t
parent_idx: "
<<
parent_idx
<<
"
\n\t
child_idx: "
<<
child_idx
);
}
...
...
dlib/graph_utils/graph_utils_abstract.h
View file @
87113b61
...
...
@@ -45,6 +45,42 @@ namespace dlib
(i.e. returns g.node(i).edge(x) such that g.node(i).neighbor(x).index() == j)
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
typename
T
::
edge_type
&
edge
(
T
&
g
,
unsigned
long
parent_idx
,
unsigned
long
child_idx
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- g.has_edge(parent_idx,child_idx)
ensures
- returns a reference to the edge data for the directed edge connecting parent
node g.node(parent_idx) to child node g.node(child_idx).
!*/
template
<
typename
T
>
typename
const
T
::
edge_type
&
edge
(
const
T
&
g
,
unsigned
long
parent_idx
,
unsigned
long
child_idx
);
/*!
requires
- T is an implementation of directed_graph/directed_graph_kernel_abstract.h
- g.has_edge(parent_idx,child_idx)
ensures
- returns a reference to the edge data for the directed edge connecting parent
node g.node(parent_idx) to child node g.node(child_idx).
!*/
// ----------------------------------------------------------------------------------------
template
<
...
...
dlib/matrix/matrix_utilities.h
View file @
87113b61
...
...
@@ -2872,6 +2872,80 @@ namespace dlib
return
matrix_op
<
op
>
(
op
(
m
.
ref
(),
lower
,
upper
));
}
// ----------------------------------------------------------------------------------------
template
<
typename
M
>
struct
op_lowerbound
:
basic_op_m
<
M
>
{
typedef
typename
M
::
type
type
;
op_lowerbound
(
const
M
&
m_
,
const
type
&
thresh_
)
:
basic_op_m
<
M
>
(
m_
),
thresh
(
thresh_
){}
const
type
&
thresh
;
typedef
const
typename
M
::
type
const_ret_type
;
const
static
long
cost
=
M
::
cost
+
2
;
const_ret_type
apply
(
long
r
,
long
c
)
const
{
const
type
temp
=
this
->
m
(
r
,
c
);
if
(
temp
>=
thresh
)
return
temp
;
else
return
thresh
;
}
};
template
<
typename
EXP
>
const
matrix_op
<
op_lowerbound
<
EXP
>
>
lowerbound
(
const
matrix_exp
<
EXP
>&
m
,
const
typename
EXP
::
type
&
thresh
)
{
typedef
op_lowerbound
<
EXP
>
op
;
return
matrix_op
<
op
>
(
op
(
m
.
ref
(),
thresh
));
}
// ----------------------------------------------------------------------------------------
template
<
typename
M
>
struct
op_upperbound
:
basic_op_m
<
M
>
{
typedef
typename
M
::
type
type
;
op_upperbound
(
const
M
&
m_
,
const
type
&
thresh_
)
:
basic_op_m
<
M
>
(
m_
),
thresh
(
thresh_
){}
const
type
&
thresh
;
typedef
const
typename
M
::
type
const_ret_type
;
const
static
long
cost
=
M
::
cost
+
2
;
const_ret_type
apply
(
long
r
,
long
c
)
const
{
const
type
temp
=
this
->
m
(
r
,
c
);
if
(
temp
<=
thresh
)
return
temp
;
else
return
thresh
;
}
};
template
<
typename
EXP
>
const
matrix_op
<
op_upperbound
<
EXP
>
>
upperbound
(
const
matrix_exp
<
EXP
>&
m
,
const
typename
EXP
::
type
&
thresh
)
{
typedef
op_upperbound
<
EXP
>
op
;
return
matrix_op
<
op
>
(
op
(
m
.
ref
(),
thresh
));
}
// ----------------------------------------------------------------------------------------
template
<
typename
M
>
...
...
dlib/matrix/matrix_utilities_abstract.h
View file @
87113b61
...
...
@@ -1707,6 +1707,42 @@ namespace dlib
- R(r,c) == m(r,c)
!*/
// ----------------------------------------------------------------------------------------
const
matrix_exp
lowerbound
(
const
matrix_exp
&
m
,
const
matrix_exp
::
type
&
thresh
);
/*!
ensures
- returns a matrix R such that:
- R::type == the same type that was in m
- R has the same dimensions as m
- for all valid r and c:
- if (m(r,c) >= thresh) then
- R(r,c) == m(r,c)
- else
- R(r,c) == thresh
!*/
// ----------------------------------------------------------------------------------------
const
matrix_exp
upperbound
(
const
matrix_exp
&
m
,
const
matrix_exp
::
type
&
thresh
);
/*!
ensures
- returns a matrix R such that:
- R::type == the same type that was in m
- R has the same dimensions as m
- for all valid r and c:
- if (m(r,c) <= thresh) then
- R(r,c) == m(r,c)
- else
- R(r,c) == thresh
!*/
// ----------------------------------------------------------------------------------------
}
...
...
dlib/optimization/find_max_factor_graph_nmplp_abstract.h
View file @
87113b61
...
...
@@ -118,6 +118,7 @@ namespace dlib
of another node in the graph.
!*/
public
:
neighbor_iterator
(
);
/*!
...
...
dlib/optimization/optimization_oca.h
View file @
87113b61
...
...
@@ -7,7 +7,7 @@
#include "../matrix.h"
#include "optimization_solve_qp_using_smo.h"
#include <
list
>
#include <
vector
>
// ----------------------------------------------------------------------------------------
...
...
@@ -110,7 +110,8 @@ namespace dlib
>
typename
matrix_type
::
type
operator
()
(
const
oca_problem
<
matrix_type
>&
problem
,
matrix_type
&
w
matrix_type
&
w
,
bool
require_nonnegative_w
=
false
)
const
{
// make sure requires clause is not broken
...
...
@@ -130,10 +131,10 @@ namespace dlib
const
scalar_type
C
=
problem
.
get_c
();
std
::
list
<
vec
t_type
>
planes
;
matrix
<
scalar_type
,
0
,
0
,
mem_manager_type
,
layou
t_type
>
planes
;
std
::
vector
<
scalar_type
>
bs
,
miss_count
;
vect_type
temp
,
alpha
;
vect_type
new_plane
,
alpha
;
w
.
set_size
(
problem
.
get_num_dimensions
(),
1
);
w
=
0
;
...
...
@@ -154,7 +155,7 @@ namespace dlib
// The flat lower bounding plane is always good to have if we know
// what it is.
bs
.
push_back
(
R_lower_bound
);
planes
.
push_back
(
zeros_matrix
<
scalar_type
>
(
w
.
size
(),
1
)
);
planes
=
zeros_matrix
(
w
);
alpha
=
uniform_matrix
<
scalar_type
>
(
1
,
1
,
C
);
miss_count
.
push_back
(
0
);
...
...
@@ -169,9 +170,12 @@ namespace dlib
// add the next cutting plane
scalar_type
cur_risk
;
planes
.
resize
(
planes
.
size
()
+
1
);
problem
.
get_risk
(
w
,
cur_risk
,
planes
.
back
());
bs
.
push_back
(
cur_risk
-
dot
(
w
,
planes
.
back
()));
problem
.
get_risk
(
w
,
cur_risk
,
new_plane
);
if
(
planes
.
size
()
!=
0
)
planes
=
join_rows
(
planes
,
new_plane
);
else
planes
=
new_plane
;
bs
.
push_back
(
cur_risk
-
dot
(
w
,
new_plane
));
miss_count
.
push_back
(
0
);
// If alpha is empty then initialize it (we must always have sum(alpha) == C).
...
...
@@ -187,24 +191,22 @@ namespace dlib
// report current status
const
scalar_type
risk_gap
=
cur_risk
-
(
cp_obj
-
wnorm
)
/
C
;
if
(
counter
>
0
&&
problem
.
optimization_status
(
cur_obj
,
cur_obj
-
cp_obj
,
cur_risk
,
risk_gap
,
planes
.
size
(),
counter
))
cur_risk
,
risk_gap
,
planes
.
nc
(),
counter
))
{
break
;
}
// compute kernel matrix for all the planes
K
.
swap
(
Ktmp
);
K
.
set_size
(
planes
.
size
(),
planes
.
size
());
K
.
set_size
(
planes
.
nc
(),
planes
.
nc
());
// copy over the old K matrix
set_subm
(
K
,
0
,
0
,
Ktmp
.
nr
(),
Ktmp
.
nc
())
=
Ktmp
;
// now add the new row and column to K
long
rr
=
0
;
for
(
typename
std
::
list
<
vect_type
>::
iterator
r
=
planes
.
begin
();
r
!=
planes
.
end
();
++
r
)
for
(
long
c
=
0
;
c
<
planes
.
nc
();
++
c
)
{
K
(
rr
,
Ktmp
.
nc
())
=
dot
(
*
r
,
planes
.
back
());
K
(
Ktmp
.
nc
(),
rr
)
=
K
(
rr
,
Ktmp
.
nc
());
++
rr
;
K
(
c
,
Ktmp
.
nc
())
=
dot
(
colm
(
planes
,
c
),
new_plane
);
K
(
Ktmp
.
nc
(),
c
)
=
K
(
c
,
Ktmp
.
nc
());
}
...
...
@@ -216,23 +218,22 @@ namespace dlib
eps
=
1e-16
;
// Note that we warm start this optimization by using the alpha from the last
// iteration as the starting point.
solve_qp_using_smo
(
K
,
vector_to_matrix
(
bs
),
alpha
,
eps
,
sub_max_iter
);
if
(
require_nonnegative_w
)
solve_qp4_using_smo
(
planes
,
K
,
vector_to_matrix
(
bs
),
alpha
,
eps
,
sub_max_iter
);
else
solve_qp_using_smo
(
K
,
vector_to_matrix
(
bs
),
alpha
,
eps
,
sub_max_iter
);
// construct the w that minimized the subproblem.
w
=
0
;
rr
=
0
;
for
(
typename
std
::
list
<
vect_type
>::
iterator
i
=
planes
.
begin
();
i
!=
planes
.
end
();
++
i
)
w
=
-
(
planes
*
alpha
);
if
(
require_nonnegative_w
)
w
=
lowerbound
(
w
,
0
);
for
(
long
i
=
0
;
i
<
alpha
.
size
();
++
i
)
{
if
(
alpha
(
rr
)
!=
0
)
{
w
-=
alpha
(
rr
)
*
(
*
i
);
miss_count
[
rr
]
=
0
;
}
if
(
alpha
(
i
)
!=
0
)
miss_count
[
i
]
=
0
;
else
{
miss_count
[
rr
]
+=
1
;
}
++
rr
;
miss_count
[
i
]
+=
1
;
}
// Compute the lower bound on the true objective given to us by the cutting
...
...
@@ -245,13 +246,11 @@ namespace dlib
while
(
max
(
vector_to_matrix
(
miss_count
))
>=
inactive_thresh
)
{
const
long
idx
=
index_of_max
(
vector_to_matrix
(
miss_count
));
typename
std
::
list
<
vect_type
>::
iterator
i0
=
planes
.
begin
();
advance
(
i0
,
idx
);
planes
.
erase
(
i0
);
bs
.
erase
(
bs
.
begin
()
+
idx
);
miss_count
.
erase
(
miss_count
.
begin
()
+
idx
);
K
=
removerc
(
K
,
idx
,
idx
);
alpha
=
remove_row
(
alpha
,
idx
);
planes
=
remove_col
(
planes
,
idx
);
}
++
counter
;
...
...
dlib/optimization/optimization_oca_abstract.h
View file @
87113b61
...
...
@@ -124,7 +124,8 @@ namespace dlib
For reference, OCA solves optimization problems with the following form:
Minimize: f(w) == 0.5*dot(w,w) + C*R(w)
Where R(w) is a user-supplied convex function and C > 0
Where R(w) is a user-supplied convex function and C > 0. Optionally,
this object can also add the non-negativity constraint that min(w) >= 0.
For a detailed discussion you should consult the following papers
...
...
@@ -149,7 +150,8 @@ namespace dlib
>
typename
matrix_type
::
type
operator
()
(
const
oca_problem
<
matrix_type
>&
problem
,
matrix_type
&
w
matrix_type
&
w
,
bool
require_nonnegative_w
=
false
)
const
;
/*!
requires
...
...
@@ -160,6 +162,10 @@ namespace dlib
- The optimization algorithm runs until problem.optimization_status()
indicates it is time to stop.
- returns the objective value at the solution #w
- if (require_nonnegative_w == true) then
- Adds the constraint that every element of w be non-negative.
Therefore, if this argument is true then #w won't contain any
negative values.
!*/
void
set_subproblem_epsilon
(
...
...
dlib/optimization/optimization_solve_qp_using_smo.h
View file @
87113b61
...
...
@@ -147,7 +147,7 @@ namespace dlib
// Check how big the duality gap is and stop when it goes below eps.
// The duality gap is the gap between the objective value of the function
// we are optimizing and the value of it
'
s primal form. This value is always
// we are optimizing and the value of its primal form. This value is always
// greater than or equal to the distance to the optimum solution so it is a
// good way to decide if we should stop. See the book referenced above for
// more information. In particular, see the part about the Wolfe Dual.
...
...
@@ -211,6 +211,176 @@ namespace dlib
// ----------------------------------------------------------------------------------------
template
<
typename
EXP1
,
typename
EXP2
,
typename
EXP3
,
typename
T
,
long
NR
,
long
NC
,
typename
MM
,
typename
L
>
unsigned
long
solve_qp4_using_smo
(
const
matrix_exp
<
EXP1
>&
A
,
const
matrix_exp
<
EXP2
>&
Q
,
const
matrix_exp
<
EXP3
>&
b
,
matrix
<
T
,
NR
,
NC
,
MM
,
L
>&
alpha
,
T
eps
,
unsigned
long
max_iter
)
{
// make sure requires clause is not broken
DLIB_CASSERT
(
A
.
nc
()
==
alpha
.
size
()
&&
Q
.
nr
()
==
Q
.
nc
()
&&
is_col_vector
(
b
)
&&
is_col_vector
(
alpha
)
&&
b
.
size
()
==
alpha
.
size
()
&&
b
.
size
()
==
Q
.
nr
()
&&
alpha
.
size
()
>
0
&&
min
(
alpha
)
>=
0
&&
eps
>
0
&&
max_iter
>
0
,
"
\t
void solve_qp4_using_smo()"
<<
"
\n\t
Invalid arguments were given to this function"
<<
"
\n\t
A.nc(): "
<<
A
.
nc
()
<<
"
\n\t
Q.nr(): "
<<
Q
.
nr
()
<<
"
\n\t
Q.nc(): "
<<
Q
.
nc
()
<<
"
\n\t
is_col_vector(b): "
<<
is_col_vector
(
b
)
<<
"
\n\t
is_col_vector(alpha): "
<<
is_col_vector
(
alpha
)
<<
"
\n\t
b.size(): "
<<
b
.
size
()
<<
"
\n\t
alpha.size(): "
<<
alpha
.
size
()
<<
"
\n\t
Q.nr(): "
<<
Q
.
nr
()
<<
"
\n\t
min(alpha): "
<<
min
(
alpha
)
<<
"
\n\t
eps: "
<<
eps
<<
"
\n\t
max_iter: "
<<
max_iter
);
const
T
C
=
sum
(
alpha
);
/*
For this optimization problem, it is the case that the optimal
value of lambda is given by a simple closed form expression if we
know the optimal alpha. So what we will do is to just optimize
alpha and every now and then we will update lambda with its optimal
value. Therefore, we use essentially the same method as the
solve_qp_using_smo() routine.
*/
// compute optimal lambda for current alpha
matrix
<
T
,
NR
,
1
,
MM
,
L
>
lambda
=
A
*
alpha
;
lambda
=
lowerbound
(
lambda
,
0
);
// Compute f'(alpha) (i.e. the gradient of f(alpha) with respect to alpha) for the current alpha.
matrix
<
T
,
NR
,
NC
,
MM
,
L
>
df
=
Q
*
alpha
-
b
-
trans
(
A
)
*
lambda
;
const
T
tau
=
1000
*
std
::
numeric_limits
<
T
>::
epsilon
();
T
big
,
little
;
unsigned
long
iter
=
0
;
for
(;
iter
<
max_iter
;
++
iter
)
{
// Find the two elements of df that satisfy the following:
// - little_idx == index_of_min(df)
// - big_idx == the index of the largest element in df such that alpha(big_idx) > 0
// These two indices will tell us which two alpha values are most in violation of the KKT
// optimality conditions.
big
=
-
std
::
numeric_limits
<
T
>::
max
();
long
big_idx
=
0
;
little
=
std
::
numeric_limits
<
T
>::
max
();
long
little_idx
=
0
;
for
(
long
i
=
0
;
i
<
df
.
nr
();
++
i
)
{
if
(
df
(
i
)
>
big
&&
alpha
(
i
)
>
0
)
{
big
=
df
(
i
);
big_idx
=
i
;
}
if
(
df
(
i
)
<
little
)
{
little
=
df
(
i
);
little_idx
=
i
;
}
}
// Check how big the duality gap is and stop when it goes below eps.
// The duality gap is the gap between the objective value of the function
// we are optimizing and the value of its primal form. This value is always
// greater than or equal to the distance to the optimum solution so it is a
// good way to decide if we should stop.
if
(
trans
(
alpha
)
*
df
-
C
*
little
<
eps
)
{
// compute optimal lambda and recheck the duality gap to make
// sure we have really converged.
lambda
=
A
*
alpha
;
lambda
=
lowerbound
(
lambda
,
0
);
df
=
Q
*
alpha
-
b
-
trans
(
A
)
*
lambda
;
if
(
trans
(
alpha
)
*
df
-
C
*
min
(
df
)
<
eps
)
break
;
else
continue
;
}
// Save these values, we will need them later.
const
T
old_alpha_big
=
alpha
(
big_idx
);
const
T
old_alpha_little
=
alpha
(
little_idx
);
// Now optimize the two variables we just picked.
T
quad_coef
=
Q
(
big_idx
,
big_idx
)
+
Q
(
little_idx
,
little_idx
)
-
2
*
Q
(
big_idx
,
little_idx
);
if
(
quad_coef
<=
tau
)
quad_coef
=
tau
;
const
T
delta
=
(
big
-
little
)
/
quad_coef
;
alpha
(
big_idx
)
-=
delta
;
alpha
(
little_idx
)
+=
delta
;
// Make sure alpha stays feasible. That is, make sure the updated alpha doesn't
// violate the non-negativity constraint.
if
(
alpha
(
big_idx
)
<
0
)
{
// Since an alpha can't be negative we will just set it to 0 and shift all the
// weight to the other alpha.
alpha
(
big_idx
)
=
0
;
alpha
(
little_idx
)
=
old_alpha_big
+
old_alpha_little
;
}
// Every 300 iterations
if
((
iter
%
300
)
==
299
)
{
// compute the optimal lambda for the current alpha
lambda
=
A
*
alpha
;
lambda
=
lowerbound
(
lambda
,
0
);
// Perform this form of the update every so often because doing so can help
// avoid the buildup of numerical errors you get with the alternate update
// below.
df
=
Q
*
alpha
-
b
-
trans
(
A
)
*
lambda
;
}
else
{
// Now update the gradient. We will perform the equivalent of: df = Q*alpha - b;
const
T
delta_alpha_big
=
alpha
(
big_idx
)
-
old_alpha_big
;
const
T
delta_alpha_little
=
alpha
(
little_idx
)
-
old_alpha_little
;
for
(
long
k
=
0
;
k
<
df
.
nr
();
++
k
)
df
(
k
)
+=
Q
(
big_idx
,
k
)
*
delta_alpha_big
+
Q
(
little_idx
,
k
)
*
delta_alpha_little
;;
}
}
/*
using namespace std;
cout << "SMO: " << endl;
cout << " duality gap: "<< trans(alpha)*df - C*min(df) << endl;
cout << " KKT gap: "<< big-little << endl;
cout << " iter: "<< iter+1 << endl;
cout << " eps: "<< eps << endl;
*/
return
iter
+
1
;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_OPTIMIZATION_SOLVE_QP_UsING_SMO_H__
...
...
dlib/optimization/optimization_solve_qp_using_smo_abstract.h
View file @
87113b61
...
...
@@ -52,6 +52,57 @@ namespace dlib
converge to eps accuracy then the number returned will be max_iter+1.
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
EXP1
,
typename
EXP2
,
typename
EXP3
,
typename
T
,
long
NR
,
long
NC
,
typename
MM
,
typename
L
>
unsigned
long
solve_qp4_using_smo
(
const
matrix_exp
<
EXP1
>&
A
,
const
matrix_exp
<
EXP2
>&
Q
,
const
matrix_exp
<
EXP3
>&
b
,
matrix
<
T
,
NR
,
NC
,
MM
,
L
>&
alpha
,
T
eps
,
unsigned
long
max_iter
);
/*!
requires
- A.nc() == alpha.size()
- Q.nr() == Q.nc()
- is_col_vector(b) == true
- is_col_vector(alpha) == true
- b.size() == alpha.size() == Q.nr()
- alpha.size() > 0
- min(alpha) >= 0
- eps > 0
- max_iter > 0
ensures
- Let C == sum(alpha) (i.e. C is the sum of the alpha values you
supply to this function)
- This function solves the following quadratic program:
Minimize: f(alpha,lambda) == 0.5*trans(alpha)*Q*alpha - trans(alpha)*b +
0.5*trans(lambda)*lambda - trans(lambda)*A*alpha
subject to the following constraints:
- sum(alpha) == C (i.e. the sum of alpha values doesn't change)
- min(alpha) >= 0 (i.e. all alpha values are nonnegative)
- min(lambda) >= 0 (i.e. all lambda values are nonnegative)
Where f is convex. This means that Q should be positive-semidefinite.
- The solution to the above QP will be stored in #alpha. The optimal
lambda is not output since its value is given by the following expression:
lowerbound(A*alpha,0)
- This function uses a simple implementation of the sequential minimal
optimization algorithm. It starts the algorithm with the given alpha
and it works on the problem until the duality gap (i.e. how far away
we are from the optimum solution) is less than eps. So eps controls
how accurate the solution is and smaller values result in better solutions.
- At most max_iter iterations of optimization will be performed.
- returns the number of iterations performed. If this method fails to
converge to eps accuracy then the number returned will be max_iter+1.
!*/
// ----------------------------------------------------------------------------------------
}
...
...
dlib/svm/svm_c_linear_trainer.h
View file @
87113b61
...
...
@@ -173,8 +173,11 @@ namespace dlib
{
using
dlib
::
sparse_vector
::
dot
;
using
dlib
::
dot
;
// The reason for using w_size_m1 and not just w.size()-1 is because
// doing it this way avoids an inane warning from gcc that can occur in some cases.
const
long
w_size_m1
=
w
.
size
()
-
1
;
for
(
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
dot_prods
[
i
]
=
dot
(
colm
(
w
,
0
,
w
.
size
()
-
1
),
samples
(
i
))
-
w
(
w
.
size
()
-
1
);
dot_prods
[
i
]
=
dot
(
colm
(
w
,
0
,
w
_size_m1
),
samples
(
i
))
-
w
(
w_size_m
1
);
if
(
is_first_call
)
{
...
...
dlib/test/CMakeLists.txt
View file @
87113b61
...
...
@@ -74,6 +74,7 @@ set (tests
metaprogramming.cpp
multithreaded_object.cpp
object_detector.cpp
oca.cpp
one_vs_all_trainer.cpp
one_vs_one_trainer.cpp
optimization.cpp
...
...
dlib/test/makefile
View file @
87113b61
...
...
@@ -89,6 +89,7 @@ SRC += member_function_pointer.cpp
SRC
+=
metaprogramming.cpp
SRC
+=
multithreaded_object.cpp
SRC
+=
object_detector.cpp
SRC
+=
oca.cpp
SRC
+=
one_vs_all_trainer.cpp
SRC
+=
one_vs_one_trainer.cpp
SRC
+=
optimization.cpp
...
...
dlib/test/matrix4.cpp
View file @
87113b61
...
...
@@ -607,6 +607,31 @@ namespace
DLIB_TEST
(
equal
(
0.0
/
m
,
zeros_matrix
<
double
>
(
3
,
4
)));
}
}
{
matrix
<
int
>
m
(
2
,
3
);
m
=
1
,
2
,
3
,
4
,
5
,
6
;
matrix
<
int
>
M
(
2
,
3
);
M
=
m
;
DLIB_TEST
(
upperbound
(
m
,
6
)
==
M
);
DLIB_TEST
(
upperbound
(
m
,
60
)
==
M
);
DLIB_TEST
(
lowerbound
(
m
,
-
2
)
==
M
);
DLIB_TEST
(
lowerbound
(
m
,
0
)
==
M
);
M
=
2
,
2
,
3
,
4
,
5
,
6
;
DLIB_TEST
(
lowerbound
(
m
,
2
)
==
M
);
M
=
0
,
0
,
0
,
0
,
0
,
0
;
DLIB_TEST
(
upperbound
(
m
,
0
)
==
M
);
M
=
1
,
2
,
3
,
3
,
3
,
3
;
DLIB_TEST
(
upperbound
(
m
,
3
)
==
M
);
}
}
...
...
dlib/test/oca.cpp
0 → 100644
View file @
87113b61
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/optimization.h>
#include <dlib/svm.h>
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include <vector>
#include "tester.h"
namespace
{
using
namespace
test
;
using
namespace
dlib
;
using
namespace
std
;
logger
dlog
(
"test.oca"
);
// ----------------------------------------------------------------------------------------
class
test_oca
:
public
tester
{
public
:
test_oca
(
)
:
tester
(
"test_oca"
,
"Runs tests on the oca component."
)
{
}
void
perform_test
(
)
{
print_spinner
();
typedef
matrix
<
double
,
0
,
1
>
w_type
;
w_type
w
;
std
::
vector
<
w_type
>
x
;
w_type
temp
(
2
);
temp
=
-
1
,
1
;
x
.
push_back
(
temp
);
temp
=
1
,
-
1
;
x
.
push_back
(
temp
);
std
::
vector
<
double
>
y
;
y
.
push_back
(
+
1
);
y
.
push_back
(
-
1
);
w_type
true_w
(
3
);
oca
solver
;
// test the version without a non-negativity constraint on w.
solver
(
make_oca_problem_c_svm
<
w_type
>
(
2.0
,
3.0
,
vector_to_matrix
(
x
),
vector_to_matrix
(
y
),
false
,
1e-12
,
40
),
w
,
false
);
dlog
<<
LINFO
<<
w
;
true_w
=
-
0.5
,
0.5
,
0
;
dlog
<<
LINFO
<<
"error: "
<<
max
(
abs
(
w
-
true_w
));
DLIB_TEST
(
max
(
abs
(
w
-
true_w
))
<
1e-10
);
print_spinner
();
// test the version with a non-negativity constraint on w.
solver
(
make_oca_problem_c_svm
<
w_type
>
(
2.0
,
3.0
,
vector_to_matrix
(
x
),
vector_to_matrix
(
y
),
false
,
1e-12
,
40
),
w
,
true
);
dlog
<<
LINFO
<<
w
;
true_w
=
0
,
1
,
0
;
dlog
<<
LINFO
<<
"error: "
<<
max
(
abs
(
w
-
true_w
));
DLIB_TEST
(
max
(
abs
(
w
-
true_w
))
<
1e-10
);
}
}
a
;
}
dlib/test/opt_qp_solver.cpp
View file @
87113b61
...
...
@@ -72,6 +72,290 @@ namespace
matrix
<
double
>
Q
,
b
;
};
// ----------------------------------------------------------------------------------------
double
compute_objective_value
(
const
matrix
<
double
,
0
,
1
>&
w
,
const
matrix
<
double
>&
A
,
const
matrix
<
double
,
0
,
1
>&
b
,
const
double
C
)
{
return
0.5
*
dot
(
w
,
w
)
+
C
*
max
(
trans
(
A
)
*
w
+
b
);
}
// ----------------------------------------------------------------------------------------
void
test_qp4_test1
()
{
matrix
<
double
>
A
(
3
,
2
);
A
=
1
,
2
,
-
3
,
1
,
6
,
7
;
matrix
<
double
,
0
,
1
>
b
(
2
);
b
=
1
,
2
;
const
double
C
=
2
;
matrix
<
double
,
0
,
1
>
alpha
(
2
),
true_alpha
(
2
);
alpha
=
C
/
2
,
C
/
2
;
solve_qp4_using_smo
(
A
,
tmp
(
trans
(
A
)
*
A
),
b
,
alpha
,
1e-9
,
800
);
matrix
<
double
,
0
,
1
>
w
=
lowerbound
(
-
A
*
alpha
,
0
);
dlog
<<
LINFO
<<
"*******************************************************"
;
dlog
<<
LINFO
<<
"w: "
<<
trans
(
w
);
dlog
<<
LINFO
<<
"computed obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
w
=
0
;
dlog
<<
LINFO
<<
"with true w obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
true_alpha
=
0
,
2
;
dlog
<<
LINFO
<<
"true alpha: "
<<
trans
(
true_alpha
);
dlog
<<
LINFO
<<
"alpha error: "
<<
max
(
abs
(
alpha
-
true_alpha
));
DLIB_TEST
(
max
(
abs
(
alpha
-
true_alpha
))
<
1e-9
);
}
// ----------------------------------------------------------------------------------------
void
test_qp4_test2
()
{
matrix
<
double
>
A
(
3
,
2
);
A
=
1
,
2
,
3
,
-
1
,
6
,
7
;
matrix
<
double
,
0
,
1
>
b
(
2
);
b
=
1
,
2
;
const
double
C
=
2
;
matrix
<
double
,
0
,
1
>
alpha
(
2
),
true_alpha
(
2
);
alpha
=
C
/
2
,
C
/
2
;
solve_qp4_using_smo
(
A
,
tmp
(
trans
(
A
)
*
A
),
b
,
alpha
,
1e-9
,
800
);
matrix
<
double
,
0
,
1
>
w
=
lowerbound
(
-
A
*
alpha
,
0
);
dlog
<<
LINFO
<<
"*******************************************************"
;
dlog
<<
LINFO
<<
"w: "
<<
trans
(
w
);
dlog
<<
LINFO
<<
"computed obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
w
=
0
,
0.25
,
0
;
dlog
<<
LINFO
<<
"with true w obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
true_alpha
=
0.43750
,
1.56250
;
dlog
<<
LINFO
<<
"true alpha: "
<<
trans
(
true_alpha
);
dlog
<<
LINFO
<<
"alpha error: "
<<
max
(
abs
(
alpha
-
true_alpha
));
DLIB_TEST
(
max
(
abs
(
alpha
-
true_alpha
))
<
1e-9
);
}
// ----------------------------------------------------------------------------------------
void
test_qp4_test3
()
{
matrix
<
double
>
A
(
3
,
2
);
A
=
1
,
2
,
-
3
,
-
1
,
6
,
7
;
matrix
<
double
,
0
,
1
>
b
(
2
);
b
=
1
,
2
;
const
double
C
=
2
;
matrix
<
double
,
0
,
1
>
alpha
(
2
),
true_alpha
(
2
);
alpha
=
C
/
2
,
C
/
2
;
solve_qp4_using_smo
(
A
,
tmp
(
trans
(
A
)
*
A
),
b
,
alpha
,
1e-9
,
800
);
matrix
<
double
,
0
,
1
>
w
=
lowerbound
(
-
A
*
alpha
,
0
);
dlog
<<
LINFO
<<
"*******************************************************"
;
dlog
<<
LINFO
<<
"w: "
<<
trans
(
w
);
dlog
<<
LINFO
<<
"computed obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
w
=
0
,
2
,
0
;
dlog
<<
LINFO
<<
"with true w obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
true_alpha
=
0
,
2
;
dlog
<<
LINFO
<<
"true alpha: "
<<
trans
(
true_alpha
);
dlog
<<
LINFO
<<
"alpha error: "
<<
max
(
abs
(
alpha
-
true_alpha
));
DLIB_TEST
(
max
(
abs
(
alpha
-
true_alpha
))
<
1e-9
);
}
// ----------------------------------------------------------------------------------------
void
test_qp4_test5
()
{
matrix
<
double
>
A
(
3
,
3
);
A
=
1
,
2
,
4
,
3
,
1
,
6
,
6
,
7
,
-
2
;
matrix
<
double
,
0
,
1
>
b
(
3
);
b
=
1
,
2
,
3
;
const
double
C
=
2
;
matrix
<
double
,
0
,
1
>
alpha
(
3
),
true_alpha
(
3
);
alpha
=
C
/
2
,
C
/
2
,
0
;
solve_qp4_using_smo
(
A
,
tmp
(
trans
(
A
)
*
A
),
b
,
alpha
,
1e-9
,
800
);
matrix
<
double
,
0
,
1
>
w
=
lowerbound
(
-
A
*
alpha
,
0
);
dlog
<<
LINFO
<<
"*******************************************************"
;
dlog
<<
LINFO
<<
"w: "
<<
trans
(
w
);
dlog
<<
LINFO
<<
"computed obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
w
=
0
,
0
,
0.11111111111111111111
;
dlog
<<
LINFO
<<
"with true w obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
true_alpha
=
0
,
0.432098765432099
,
1.567901234567901
;
dlog
<<
LINFO
<<
"true alpha: "
<<
trans
(
true_alpha
);
dlog
<<
LINFO
<<
"alpha error: "
<<
max
(
abs
(
alpha
-
true_alpha
));
DLIB_TEST
(
max
(
abs
(
alpha
-
true_alpha
))
<
1e-9
);
}
// ----------------------------------------------------------------------------------------
void
test_qp4_test4
()
{
matrix
<
double
>
A
(
3
,
2
);
A
=
1
,
2
,
3
,
1
,
6
,
7
;
matrix
<
double
,
0
,
1
>
b
(
2
);
b
=
1
,
2
;
const
double
C
=
2
;
matrix
<
double
,
0
,
1
>
alpha
(
2
),
true_alpha
(
2
);
alpha
=
C
/
2
,
C
/
2
;
solve_qp4_using_smo
(
A
,
tmp
(
trans
(
A
)
*
A
),
b
,
alpha
,
1e-9
,
800
);
matrix
<
double
,
0
,
1
>
w
=
lowerbound
(
-
A
*
alpha
,
0
);
dlog
<<
LINFO
<<
"*******************************************************"
;
dlog
<<
LINFO
<<
"w: "
<<
trans
(
w
);
dlog
<<
LINFO
<<
"computed obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
w
=
0
,
0
,
0
;
dlog
<<
LINFO
<<
"with true w obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
true_alpha
=
0
,
2
;
dlog
<<
LINFO
<<
"true alpha: "
<<
trans
(
true_alpha
);
dlog
<<
LINFO
<<
"alpha error: "
<<
max
(
abs
(
alpha
-
true_alpha
));
DLIB_TEST
(
max
(
abs
(
alpha
-
true_alpha
))
<
1e-9
);
}
void
test_qp4_test6
()
{
matrix
<
double
>
A
(
3
,
3
);
A
=
1
,
2
,
4
,
3
,
1
,
6
,
6
,
7
,
-
2
;
matrix
<
double
,
0
,
1
>
b
(
3
);
b
=
-
1
,
-
2
,
-
3
;
const
double
C
=
2
;
matrix
<
double
,
0
,
1
>
alpha
(
3
),
true_alpha
(
3
);
alpha
=
C
/
2
,
C
/
2
,
0
;
solve_qp4_using_smo
(
A
,
tmp
(
trans
(
A
)
*
A
),
b
,
alpha
,
1e-9
,
800
);
matrix
<
double
,
0
,
1
>
w
=
lowerbound
(
-
A
*
alpha
,
0
);
dlog
<<
LINFO
<<
"*******************************************************"
;
dlog
<<
LINFO
<<
"w: "
<<
trans
(
w
);
dlog
<<
LINFO
<<
"computed obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
w
=
0
,
0
,
0
;
dlog
<<
LINFO
<<
"with true w obj: "
<<
compute_objective_value
(
w
,
A
,
b
,
C
);
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
true_alpha
=
2
,
0
,
0
;
dlog
<<
LINFO
<<
"true alpha: "
<<
trans
(
true_alpha
);
dlog
<<
LINFO
<<
"alpha error: "
<<
max
(
abs
(
alpha
-
true_alpha
));
DLIB_TEST
(
max
(
abs
(
alpha
-
true_alpha
))
<
1e-9
);
}
void
test_qp4_test7
()
{
matrix
<
double
>
A
(
3
,
3
);
A
=
-
1
,
2
,
4
,
-
3
,
1
,
6
,
-
6
,
7
,
-
2
;
matrix
<
double
,
0
,
1
>
b
(
3
);
b
=
-
1
,
-
2
,
3
;
matrix
<
double
>
Q
(
3
,
3
);
Q
=
4
,
-
5
,
6
,
1
,
-
4
,
2
,
-
9
,
-
4
,
5
;
Q
=
Q
*
trans
(
Q
);
const
double
C
=
2
;
matrix
<
double
,
0
,
1
>
alpha
(
3
),
true_alpha
(
3
);
alpha
=
C
/
2
,
C
/
2
,
0
;
solve_qp4_using_smo
(
A
,
Q
,
b
,
alpha
,
1e-9
,
800
);
dlog
<<
LINFO
<<
"*******************************************************"
;
dlog
<<
LINFO
<<
"alpha: "
<<
trans
(
alpha
);
true_alpha
=
0
,
2
,
0
;
dlog
<<
LINFO
<<
"true alpha: "
<<
trans
(
true_alpha
);
dlog
<<
LINFO
<<
"alpha error: "
<<
max
(
abs
(
alpha
-
true_alpha
));
DLIB_TEST
(
max
(
abs
(
alpha
-
true_alpha
))
<
1e-9
);
}
// ----------------------------------------------------------------------------------------
void
test_solve_qp4_using_smo
()
{
test_qp4_test1
();
test_qp4_test2
();
test_qp4_test3
();
test_qp4_test4
();
test_qp4_test5
();
test_qp4_test6
();
test_qp4_test7
();
}
// ----------------------------------------------------------------------------------------
class
opt_qp_solver_tester
:
public
tester
...
...
@@ -98,6 +382,10 @@ namespace
void
perform_test
(
)
{
print_spinner
();
test_solve_qp4_using_smo
();
print_spinner
();
++
thetime
;
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
//dlog << LINFO << "time seed: " << thetime;
...
...
docs/docs/compile.xml
View file @
87113b61
...
...
@@ -59,14 +59,11 @@ cd examples
mkdir build
cd build
cmake ..
cmake --build . --config Release
</code_box>
Then cmake will create whatever is needed to compile the examples on your computer. If you are using Linux
or a Mac it will create a makefile and then you can compile everything by typing:
<code_box>
make
</code_box>
Or on windows, if you have Visual Studio installed, it will make a Visual Studio project which you can then open
and compile by clicking the build button.
Note that you also need to have a C++ compiler installed on your system. There are free C++ compilers
for most operating systems. For example, Visual Studio Express is free on Windows and GCC is free and
works well on Mac OS X and Linux systems.
<h2>
Compiling on Linux From Command Line
</h2>
From within the examples folder, you can compile any of the examples with a single command like so:
...
...
@@ -87,7 +84,7 @@ it by typing:
sudo apt-get install libx11-dev
</code_box>
<h2>
Compiling on Windows
using gcc
</h2>
<h2>
Compiling on Windows
Using GCC
</h2>
<p>
The commands for gcc on windows are the same as above but you may also have to link
(via the -l option) to the following libraries: gdi32, comctl32, user32, ws2_32, or imm32.
...
...
@@ -95,7 +92,7 @@ sudo apt-get install libx11-dev
windows development than gcc.
</p>
<h2>
Compiling on Windows
u
sing Visual Studio
</h2>
<h2>
Compiling on Windows
U
sing Visual Studio
</h2>
<p>
All you need to do is create an empty console project. Then add dlib/all/source.cpp to it and add the
folder containing the dlib folder to the #include search path. Then you can compile any example program
...
...
docs/docs/containers.xml
View file @
87113b61
...
...
@@ -557,6 +557,14 @@
<name>
clamp
</name>
<link>
dlib/matrix/matrix_utilities_abstract.h.html#clamp
</link>
</item>
<item>
<name>
lowerbound
</name>
<link>
dlib/matrix/matrix_utilities_abstract.h.html#lowerbound
</link>
</item>
<item>
<name>
upperbound
</name>
<link>
dlib/matrix/matrix_utilities_abstract.h.html#upperbound
</link>
</item>
<item>
<name>
linspace
</name>
<link>
dlib/matrix/matrix_utilities_abstract.h.html#linspace
</link>
...
...
docs/docs/index.xml
View file @
87113b61
...
...
@@ -161,7 +161,8 @@
<li><b>
Image Processing
</b>
<ul>
<li>
Windows BMP
<a
href=
"imaging.html#load_bmp"
>
read
</a>
and
<a
href=
"imaging.html#save_bmp"
>
write
</a>
support
</li>
<li>
Routines for
<a
href=
"imaging.html#load_image"
>
reading
</a>
and
<a
href=
"imaging.html#save_bmp"
>
writing
</a>
common image formats.
</li>
<li>
Automatic color space conversion between various pixel types
</li>
<li>
Common image operations such as edge finding and morphological operations
</li>
<li>
Implementations of the
<a
href=
"imaging.html#get_surf_points"
>
SURF
</a>
...
...
docs/docs/optimization.xml
View file @
87113b61
...
...
@@ -43,6 +43,7 @@
<item>
solve_qp_using_smo
</item>
<item>
solve_qp2_using_smo
</item>
<item>
solve_qp3_using_smo
</item>
<item>
solve_qp4_using_smo
</item>
<item>
oca
</item>
<item>
solve_least_squares
</item>
<item>
solve_least_squares_lm
</item>
...
...
@@ -430,6 +431,28 @@ subject to the following constraint:
</component>
<!-- ************************************************************************* -->
<component>
<name>
solve_qp4_using_smo
</name>
<file>
dlib/optimization.h
</file>
<spec_file
link=
"true"
>
dlib/optimization/optimization_solve_qp_using_smo_abstract.h
</spec_file>
<description>
This function solves the following quadratic program:
<pre>
Minimize: f(alpha,lambda) == 0.5*trans(alpha)*Q*alpha - trans(alpha)*b +
0.5*trans(lambda)*lambda - trans(lambda)*A*alpha
subject to the following constraints:
sum(alpha) == C
min(alpha) >= 0
min(lambda) >= 0
Where f is convex. This means that Q should be positive-semidefinite.
</pre>
</description>
</component>
<!-- ************************************************************************* -->
<component>
...
...
@@ -520,7 +543,8 @@ subject to the following constraint:
<pre>
Minimize: f(w) == 0.5*dot(w,w) + C*R(w)
Where R(w) is a user-supplied convex function and C > 0
Where R(w) is a user-supplied convex function and C > 0. Optionally,
this object can also add the non-negativity constraint that min(w) >= 0.
</pre>
<br/>
<br/>
...
...
docs/docs/release_notes.xml
View file @
87113b61
...
...
@@ -13,8 +13,8 @@
<current>
New Stuff:
- Image Processing:
- Added the option to make the features generated by
the poly_image
rotationally
invariant.
- Added the option to make the features generated by
poly_image rotationally
invariant.
- Added a set of routines for warping, scaling, and resizing images.
See the new "Scaling and Rotating" section of the image processing
documentation for details.
...
...
@@ -27,7 +27,7 @@ New Stuff:
- Added the get_option() routines which slightly simplify option parsing
from the command line and config files.
- Added the 128bit version of Murmur hash.
- Added the
rls_filter and kalman
_filter objects. These are tools for
- Added the
kalman_filter and rls
_filter objects. These are tools for
performing Kalman filtering and recursive least squares filtering.
- Added the circular_buffer object.
...
...
@@ -58,6 +58,9 @@ Other:
- Turned the array object into a single implementation object. Now arrays
can be created using the normal array
<
type
>
obj; syntax. Additionally,
all extensions were merged into the array object.
- Added an example program which better documents how to create training
data for the object detection tools as well as how this data can be used.
See the train_object_detector.cpp example for details.
</current>
...
...
docs/docs/term_index.xml
View file @
87113b61
...
...
@@ -80,6 +80,7 @@
<term
file=
"optimization.html"
name=
"solve_qp_using_smo"
/>
<term
file=
"optimization.html"
name=
"solve_qp2_using_smo"
/>
<term
file=
"optimization.html"
name=
"solve_qp3_using_smo"
/>
<term
file=
"optimization.html"
name=
"solve_qp4_using_smo"
/>
<term
file=
"optimization.html"
name=
"oca"
/>
<term
link=
"optimization.html#find_min_bobyqa"
name=
"BOBYQA"
/>
<term
file=
"optimization.html"
name=
"find_max"
/>
...
...
@@ -490,6 +491,8 @@
<term
file=
"dlib/matrix/matrix_utilities_abstract.h.html"
name=
"pixel_to_vector"
/>
<term
file=
"dlib/matrix/matrix_utilities_abstract.h.html"
name=
"vector_to_pixel"
/>
<term
file=
"dlib/matrix/matrix_utilities_abstract.h.html"
name=
"clamp"
/>
<term
file=
"dlib/matrix/matrix_utilities_abstract.h.html"
name=
"lowerbound"
/>
<term
file=
"dlib/matrix/matrix_utilities_abstract.h.html"
name=
"upperbound"
/>
<term
file=
"dlib/svm/sparse_vector_abstract.h.html"
name=
"scale_by"
/>
...
...
examples/train_object_detector.cpp
View file @
87113b61
...
...
@@ -2,7 +2,7 @@
/*
This is an example showing how you might use dlib to create a reasonably
function command line tool for object detection. This example assumes
function
al
command line tool for object detection. This example assumes
you are familiar with the contents of at least the following example
programs:
- object_detector_ex.cpp
...
...
@@ -13,17 +13,15 @@
This program is a command line tool for learning to detect objects in images.
Therefore, to create an object detector it requires a set of annotated training
images. To create this annotated data you will need to compile the imglab tool
included with dlib. To do this, go to the tools/imglab folder and type the
following:
images. To create this annotated data you will need to use the imglab tool
included with dlib. It is located in the tools/imglab folder and can be compiled
using the following commands.
cd tools/imglab
mkdir build
cd build
cmake ..
make
Note that you may need to install CMake (www.cmake.org) for this to work. Also,
if you are using visual studio then you should use the following command to
compile instead of "make"
cmake --build . --config Release
Note that you may need to install CMake (www.cmake.org) for this to work.
Next, lets assume you have a folder of images called /tmp/images. These images
should contain examples of the objects you want to learn to detect. You will
...
...
@@ -35,17 +33,18 @@
A window will appear showing all the images. You can use the up and down arrow
keys to cycle though the images and the mouse to label objects. In particular,
holding the shift key, left clicking, and dragging the mouse will allow you to
draw boxes around the objects you w
hich to detect. So next
label all the objects
draw boxes around the objects you w
ish to detect. So next,
label all the objects
with boxes. Note that it is important to label all the objects since any object
not labeled is implicitly assumed to be not an object we should detect.
Once you finish labeling objects go to the file menu, click save, and
close the
program. This will save the object boxes back to mydataset.xml. You can verify
Once you finish labeling objects go to the file menu, click save, and
then close
the
program. This will save the object boxes back to mydataset.xml. You can verify
this by opening the tool again with
./imglab mydataset.xml
and observing that the boxes are present.
Returning to the present example program, we can now issue the command
Returning to the present example program, we can compile it using cmake just as we
did with the imglab tool. Once compiled, we can issue the command
./train_object_detector -tv mydataset.xml
which will train an object detection model based on our labeled data. The model
will be saved to the file object_detector.svm. Once this has finished we can use
...
...
@@ -55,8 +54,8 @@
be indicated by a red box.
There are a
lso a number of other useful command line options in the current
example program which you can explore
.
There are a
number of other useful command line options in the current example
program which you can explore below
.
*/
...
...
@@ -170,8 +169,8 @@ int main(int argc, char** argv)
image_scanner_type
scanner
;
setup_hashed_features
(
scanner
,
images
,
hash_bits
);
setup_grid_detection_templates_verbose
(
scanner
,
object_locations
,
grid_size
,
grid_size
);
setup_hashed_features
(
scanner
,
images
,
hash_bits
);
structural_object_detection_trainer
<
image_scanner_type
>
trainer
(
scanner
);
trainer
.
set_num_threads
(
threads
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment