Commit 8d2243b0 authored by Davis King's avatar Davis King

Added the ability to use a kernel cache to the batch_trainer object. I also

changed it so that it always calls clear() on the trainer it uses before it
begins training.  This way it always forgets the results of previous trainings.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403143
parent 644bc768
This diff is collapsed.
...@@ -51,6 +51,11 @@ namespace dlib ...@@ -51,6 +51,11 @@ namespace dlib
typedef typename kernel_type::mem_manager_type mem_manager_type; typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type; typedef decision_function<kernel_type> trained_function_type;
template <typename K_>
struct rebind {
typedef svm_pegasos<K_> other;
};
svm_pegasos ( svm_pegasos (
); );
/*! /*!
...@@ -272,6 +277,24 @@ namespace dlib ...@@ -272,6 +277,24 @@ namespace dlib
provides serialization support for svm_pegasos objects provides serialization support for svm_pegasos objects
!*/ !*/
// ----------------------------------------------------------------------------------------
template <
typename T,
typename U
>
void replicate_settings (
const svm_pegasos<T>& source,
svm_pegasos<U>& dest
);
/*!
ensures
- copies all the parameters from the source trainer to the dest trainer.
- #dest.get_tolerance() == source.get_tolerance()
- #dest.get_lambda() == source.get_lambda()
- #dest.get_max_num_sv() == source.get_max_num_sv()
!*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
...@@ -284,6 +307,7 @@ namespace dlib ...@@ -284,6 +307,7 @@ namespace dlib
/*! /*!
REQUIREMENTS ON trainer_type REQUIREMENTS ON trainer_type
- trainer_type == some kind of online trainer object (e.g. svm_pegasos) - trainer_type == some kind of online trainer object (e.g. svm_pegasos)
replicate_settings() must also be defined for the type.
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
This is a trainer object that is meant to wrap online trainer objects This is a trainer object that is meant to wrap online trainer objects
...@@ -313,11 +337,14 @@ namespace dlib ...@@ -313,11 +337,14 @@ namespace dlib
batch_trainer ( batch_trainer (
const trainer_type& online_trainer, const trainer_type& online_trainer,
const scalar_type min_learning_rate_, const scalar_type min_learning_rate_,
bool verbose_ bool verbose_,
bool use_cache_,
long cache_size_ = 100
); );
/*! /*!
requires requires
- min_learning_rate_ > 0 - min_learning_rate_ > 0
- cache_size_ > 0
ensures ensures
- returns a batch trainer object that uses the given online_trainer object - returns a batch trainer object that uses the given online_trainer object
to train a decision function. to train a decision function.
...@@ -325,6 +352,9 @@ namespace dlib ...@@ -325,6 +352,9 @@ namespace dlib
- if (verbose_ == true) then - if (verbose_ == true) then
- this object will output status messages to standard out while - this object will output status messages to standard out while
training is under way. training is under way.
- if (use_cache_ == true) then
- this object will cache up to cache_size_ columns of the kernel
matrix during the training process.
!*/ !*/
const scalar_type get_min_learning_rate ( const scalar_type get_min_learning_rate (
...@@ -364,12 +394,12 @@ namespace dlib ...@@ -364,12 +394,12 @@ namespace dlib
const batch_trainer<trainer_type> batch ( const batch_trainer<trainer_type> batch (
const trainer_type& trainer, const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1 const typename trainer_type::scalar_type min_learning_rate = 0.1
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, false); } ) { return batch_trainer<trainer_type>(trainer, min_learning_rate, false, false); }
/*! /*!
requires requires
- min_learning_rate > 0 - min_learning_rate > 0
- trainer_type == some kind of online trainer object that creates decision_function - trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos) objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures ensures
- returns a batch_trainer object that has been instantiated with the - returns a batch_trainer object that has been instantiated with the
given arguments. given arguments.
...@@ -383,12 +413,12 @@ namespace dlib ...@@ -383,12 +413,12 @@ namespace dlib
const batch_trainer<trainer_type> verbose_batch ( const batch_trainer<trainer_type> verbose_batch (
const trainer_type& trainer, const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1 const typename trainer_type::scalar_type min_learning_rate = 0.1
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, true); } ) { return batch_trainer<trainer_type>(trainer, min_learning_rate, true, false); }
/*! /*!
requires requires
- min_learning_rate > 0 - min_learning_rate > 0
- trainer_type == some kind of online trainer object that creates decision_function - trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos) objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures ensures
- returns a batch_trainer object that has been instantiated with the - returns a batch_trainer object that has been instantiated with the
given arguments (and is verbose). given arguments (and is verbose).
...@@ -396,6 +426,49 @@ namespace dlib ...@@ -396,6 +426,49 @@ namespace dlib
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const batch_trainer<trainer_type> batch_cached (
const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1,
long cache_size = 100
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, false, true, cache_size); }
/*!
requires
- min_learning_rate > 0
- cache_size > 0
- trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures
- returns a batch_trainer object that has been instantiated with the
given arguments (uses a kernel cache).
!*/
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const batch_trainer<trainer_type> verbose_batch_cached (
const trainer_type& trainer,
const typename trainer_type::scalar_type min_learning_rate = 0.1,
long cache_size = 100
) { return batch_trainer<trainer_type>(trainer, min_learning_rate, true, true, cache_size); }
/*!
requires
- min_learning_rate > 0
- cache_size > 0
- trainer_type == some kind of online trainer object that creates decision_function
objects (e.g. svm_pegasos). replicate_settings() must also be defined for the type.
ensures
- returns a batch_trainer object that has been instantiated with the
given arguments (is verbose and uses a kernel cache).
!*/
// ----------------------------------------------------------------------------------------
} }
#endif // DLIB_PEGASoS_ABSTRACT_ #endif // DLIB_PEGASoS_ABSTRACT_
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment