Commit 8e513302 authored by Davis King's avatar Davis King

updated the docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402248
parent 385c1d98
......@@ -56,6 +56,7 @@
<item>decision_function</item>
<item>probabilistic_decision_function</item>
<item>krls</item>
<item>one_class</item>
</sub>
</item>
</section>
......@@ -678,6 +679,28 @@
</component>
<!-- ************************************************************************* -->
<component>
<name>one_class</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/one_class_abstract.h</spec_file>
<description>
This is an implementation of an online algorithm for recursively estimating the
center of mass of a sequence of training points. It uses the sparsification technique
described in the paper The Kernel Recursive Least Squares Algorithm by Yaakov Engel.
<p>
This object then allows you to compute the distance between the center of mass
and any test points. So you can use this object to predict how similar a test
point is to the data this object has been trained on (larger distances from the
centroid indicate dissimilarity/anomalous points).
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
......
......@@ -115,7 +115,8 @@
<ul>
<li><a href="algorithms.html#mlp">multi layer perceptrons</a> </li>
<li><a href="algorithms.html#svm_nu_train">nu support vector machines</a> for classification</li>
<li><a href="algorithms.html#krls">kernel RLS regression</a></li>
<li>An online <a href="algorithms.html#krls">kernel RLS regression</a> algorithm</li>
<li>An online <a href="algorithms.html#one_class">one class classifier</a></li>
<li>Bayesian Network inference algorithms such as the
<a href="algorithms.html#bayesian_network_join_tree">join tree</a> algorithm and
<a href="algorithms.html#bayesian_network_gibbs_sampler">Gibbs sampler</a> Markov Chain Monte Carlo algorithm</li>
......
......@@ -375,6 +375,7 @@
<term link="algorithms.html#vector" name="vector"/>
<term link="algorithms.html#point" name="point"/>
<term link="algorithms.html#krls" name="krls"/>
<term link="algorithms.html#one_class" name="one_class"/>
<term link="dlib/svm/svm_abstract.h.html#maximum_nu" name="maximum_nu"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment