Commit a73e7659 authored by Davis King's avatar Davis King

Made the object detector validation functions also output the mean average

precision measure.
parent 230dc754
......@@ -9,6 +9,7 @@
#include "svm.h"
#include "../geometry.h"
#include "../image_processing/full_object_detection.h"
#include "../statistics.h"
namespace dlib
{
......@@ -20,7 +21,8 @@ namespace dlib
inline unsigned long number_of_truth_hits (
const std::vector<full_object_detection>& truth_boxes,
const std::vector<rectangle>& boxes,
const double overlap_eps
const double overlap_eps,
double& ap
)
/*!
requires
......@@ -32,10 +34,19 @@ namespace dlib
A.intersect(B).area()/(A+B).area()
- No element of boxes is allowed to account for more than one element of truth_boxes.
- The returned number is in the range [0,truth_boxes.size()]
- ap == the average precision of the given ordering in boxes relative
to truth_boxes.
!*/
{
if (boxes.size() == 0)
{
if (truth_boxes.size() == 0)
ap = 1;
else
ap = 0;
return 0;
}
unsigned long count = 0;
std::vector<bool> used(boxes.size(),false);
......@@ -63,8 +74,20 @@ namespace dlib
}
}
ap = average_precision(used, truth_boxes.size()-count);
return count;
}
inline unsigned long number_of_truth_hits (
const std::vector<full_object_detection>& truth_boxes,
const std::vector<rectangle>& boxes,
const double overlap_eps
)
{
double ap;
return number_of_truth_hits(truth_boxes, boxes, overlap_eps, ap);
}
}
// ----------------------------------------------------------------------------------------
......@@ -73,7 +96,7 @@ namespace dlib
typename object_detector_type,
typename image_array_type
>
const matrix<double,1,2> test_object_detection_function (
const matrix<double,1,3> test_object_detection_function (
object_detector_type& detector,
const image_array_type& images,
const std::vector<std::vector<full_object_detection> >& truth_dets,
......@@ -94,14 +117,30 @@ namespace dlib
double correct_hits = 0;
double total_hits = 0;
double total_true_targets = 0;
running_stats<double> map;
for (unsigned long i = 0; i < images.size(); ++i)
{
const std::vector<rectangle>& hits = detector(images[i]);
std::vector<std::pair<double,rectangle> > all_dets;
detector(images[i], all_dets, -std::numeric_limits<double>::infinity());
std::vector<rectangle> hits;
for (unsigned long k = 0; k < all_dets.size(); ++k)
{
if (all_dets[k].first >= 0)
hits.push_back(all_dets[k].second);
}
total_hits += hits.size();
correct_hits += impl::number_of_truth_hits(truth_dets[i], hits, overlap_eps);
total_true_targets += truth_dets[i].size();
// now get the average precision
hits.clear();
for (unsigned long k = 0; k < all_dets.size(); ++k)
hits.push_back(all_dets[k].second);
double ap;
impl::number_of_truth_hits(truth_dets[i], hits, overlap_eps, ap);
map.add(ap);
}
......@@ -117,8 +156,8 @@ namespace dlib
else
recall = correct_hits / total_true_targets;
matrix<double, 1, 2> res;
res = precision, recall;
matrix<double, 1, 3> res;
res = precision, recall, map.mean();
return res;
}
......@@ -126,7 +165,7 @@ namespace dlib
typename object_detector_type,
typename image_array_type
>
const matrix<double,1,2> test_object_detection_function (
const matrix<double,1,3> test_object_detection_function (
object_detector_type& detector,
const image_array_type& images,
const std::vector<std::vector<rectangle> >& truth_dets,
......@@ -197,7 +236,7 @@ namespace dlib
typename trainer_type,
typename image_array_type
>
const matrix<double,1,2> cross_validate_object_detection_trainer (
const matrix<double,1,3> cross_validate_object_detection_trainer (
const trainer_type& trainer,
const image_array_type& images,
const std::vector<std::vector<full_object_detection> >& truth_dets,
......@@ -222,6 +261,7 @@ namespace dlib
const long test_size = images.size()/folds;
running_stats<double> map;
unsigned long test_idx = 0;
for (long iter = 0; iter < folds; ++iter)
{
......@@ -245,11 +285,26 @@ namespace dlib
typename trainer_type::trained_function_type detector = trainer.train(array_subset, training_rects);
for (unsigned long i = 0; i < test_idx_set.size(); ++i)
{
const std::vector<rectangle>& hits = detector(images[test_idx_set[i]]);
std::vector<std::pair<double,rectangle> > all_dets;
detector(images[test_idx_set[i]], all_dets, -std::numeric_limits<double>::infinity());
std::vector<rectangle> hits;
for (unsigned long k = 0; k < all_dets.size(); ++k)
{
if (all_dets[k].first >= 0)
hits.push_back(all_dets[k].second);
}
total_hits += hits.size();
correct_hits += impl::number_of_truth_hits(truth_dets[test_idx_set[i]], hits, overlap_eps);
total_true_targets += truth_dets[test_idx_set[i]].size();
// now get the average precision
hits.clear();
for (unsigned long k = 0; k < all_dets.size(); ++k)
hits.push_back(all_dets[k].second);
double ap;
impl::number_of_truth_hits(truth_dets[test_idx_set[i]], hits, overlap_eps, ap);
map.add(ap);
}
}
......@@ -268,8 +323,8 @@ namespace dlib
else
recall = correct_hits / total_true_targets;
matrix<double, 1, 2> res;
res = precision, recall;
matrix<double, 1, 3> res;
res = precision, recall, map.mean();
return res;
}
......@@ -277,7 +332,7 @@ namespace dlib
typename trainer_type,
typename image_array_type
>
const matrix<double,1,2> cross_validate_object_detection_trainer (
const matrix<double,1,3> cross_validate_object_detection_trainer (
const trainer_type& trainer,
const image_array_type& images,
const std::vector<std::vector<rectangle> >& truth_dets,
......
......@@ -17,7 +17,7 @@ namespace dlib
typename object_detector_type,
typename image_array_type
>
const matrix<double,1,2> test_object_detection_function (
const matrix<double,1,3> test_object_detection_function (
object_detector_type& detector,
const image_array_type& images,
const std::vector<std::vector<full_object_detection> >& truth_dets,
......@@ -32,9 +32,10 @@ namespace dlib
- image_array_type must be an implementation of dlib/array/array_kernel_abstract.h
and it must contain objects which can be accepted by detector().
ensures
- Tests the given detector against the supplied object detection problem
and returns the precision and recall. Note that the task is to predict,
for each images[i], the set of object locations given by truth_dets[i].
- Tests the given detector against the supplied object detection problem and
returns the precision, recall, and mean average precision. Note that the
task is to predict, for each images[i], the set of object locations given by
truth_dets[i].
- In particular, returns a matrix M such that:
- M(0) == the precision of the detector object. This is a number
in the range [0,1] which measures the fraction of detector outputs
......@@ -42,10 +43,18 @@ namespace dlib
never produces any false alarms while a value of 0 means it only
produces false alarms.
- M(1) == the recall of the detector object. This is a number in the
range [0,1] which measure the fraction of targets found by the
range [0,1] which measures the fraction of targets found by the
detector. A value of 1 means the detector found all the targets
in truth_dets while a value of 0 means the detector didn't locate
any of the targets.
- M(2) == the mean average precision of the detector object. This is a
number in the range [0,1] which measures the overall quality of the
detector when the detector is asked to output a ranked listing of all
possible detections. In particular, this is accomplished by setting the
detection threshold such that all possible detections are output. Then
the detections are ordered by their detection score and we use the
average_precision() routine to score each ranked listing, finally setting
M(2) to the mean value over all test images.
- The rule for deciding if a detector output, D, matches a truth rectangle,
T, is the following:
T and R match if and only if: T.intersect(R).area()/(T+R).area() > overlap_eps
......@@ -55,7 +64,7 @@ namespace dlib
typename object_detector_type,
typename image_array_type
>
const matrix<double,1,2> test_object_detection_function (
const matrix<double,1,3> test_object_detection_function (
object_detector_type& detector,
const image_array_type& images,
const std::vector<std::vector<rectangle> >& truth_dets,
......@@ -77,7 +86,7 @@ namespace dlib
typename trainer_type,
typename image_array_type
>
const matrix<double,1,2> cross_validate_object_detection_trainer (
const matrix<double,1,3> cross_validate_object_detection_trainer (
const trainer_type& trainer,
const image_array_type& images,
const std::vector<std::vector<full_object_detection> >& truth_dets,
......@@ -94,19 +103,19 @@ namespace dlib
and it must contain objects which can be accepted by detector().
- it is legal to call trainer.train(images, truth_dets)
ensures
- Performs k-fold cross-validation by using the given trainer to solve an
object detection problem for the given number of folds. Each fold is tested
using the output of the trainer and a matrix summarizing the results is
returned. The matrix contains the precision and recall of the trained
detectors and is defined identically to the test_object_detection_function()
routine defined at the top of this file.
- Performs k-fold cross-validation by using the given trainer to solve an
object detection problem for the given number of folds. Each fold is tested
using the output of the trainer and a matrix summarizing the results is
returned. The matrix contains the precision, recall, and mean average
precision of the trained detectors and is defined identically to the
test_object_detection_function() routine defined at the top of this file.
!*/
template <
typename trainer_type,
typename image_array_type
>
const matrix<double,1,2> cross_validate_object_detection_trainer (
const matrix<double,1,3> cross_validate_object_detection_trainer (
const trainer_type& trainer,
const image_array_type& images,
const std::vector<std::vector<rectangle> >& truth_dets,
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment