Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
ab0f41de
Commit
ab0f41de
authored
Sep 25, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added unit tests for the vector_normalizer_frobmetric object.
parent
df250a8f
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
124 additions
and
0 deletions
+124
-0
statistics.cpp
dlib/test/statistics.cpp
+124
-0
No files found.
dlib/test/statistics.cpp
View file @
ab0f41de
...
...
@@ -573,9 +573,133 @@ namespace
DLIB_TEST
(
std
::
abs
(
average_precision
(
items
,
1
)
-
(
2.0
+
4.0
/
5.0
+
4.0
/
5.0
)
/
5.0
)
<
1e-14
);
}
template
<
typename
sample_type
>
void
check_distance_metrics
(
const
std
::
vector
<
frobmetric_training_sample
<
sample_type
>
>&
samples
)
{
running_stats
<
double
>
rs
;
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
for
(
unsigned
long
j
=
0
;
j
<
samples
[
i
].
near
.
size
();
++
j
)
{
const
double
d1
=
length_squared
(
samples
[
i
].
anchor
-
samples
[
i
].
near
[
j
]);
for
(
unsigned
long
k
=
0
;
k
<
samples
[
i
].
far
.
size
();
++
k
)
{
const
double
d2
=
length_squared
(
samples
[
i
].
anchor
-
samples
[
i
].
far
[
k
]);
rs
.
add
(
d2
-
d1
);
}
}
}
dlog
<<
LINFO
<<
"dist gap max: "
<<
rs
.
max
();
dlog
<<
LINFO
<<
"dist gap min: "
<<
rs
.
min
();
dlog
<<
LINFO
<<
"dist gap mean: "
<<
rs
.
mean
();
dlog
<<
LINFO
<<
"dist gap stddev: "
<<
rs
.
stddev
();
DLIB_TEST
(
rs
.
min
()
>=
0.99
);
DLIB_TEST
(
rs
.
mean
()
>=
0.9999
);
}
void
test_vector_normalizer_frobmetric
(
dlib
::
rand
&
rnd
)
{
print_spinner
();
typedef
matrix
<
double
,
0
,
1
>
sample_type
;
vector_normalizer_frobmetric
<
sample_type
>
normalizer
;
std
::
vector
<
frobmetric_training_sample
<
sample_type
>
>
samples
;
frobmetric_training_sample
<
sample_type
>
samp
;
const
long
key
=
1
;
const
long
dims
=
5
;
// Lets make some two class training data. Each sample will have dims dimensions but
// only the one with index equal to key will be meaningful. In particular, if the key
// dimension is > 0 then the sample is class +1 and -1 otherwise.
long
k
=
0
;
for
(
int
i
=
0
;
i
<
50
;
++
i
)
{
samp
.
clear
();
samp
.
anchor
=
gaussian_randm
(
dims
,
1
,
k
++
);
if
(
samp
.
anchor
(
key
)
>
0
)
samp
.
anchor
(
key
)
=
rnd
.
get_random_double
()
+
5
;
else
samp
.
anchor
(
key
)
=
-
(
rnd
.
get_random_double
()
+
5
);
matrix
<
double
,
0
,
1
>
temp
;
for
(
int
j
=
0
;
j
<
5
;
++
j
)
{
// Don't always put an equal number of near and far vectors into the
// training samples.
const
int
numa
=
rnd
.
get_random_32bit_number
()
%
2
+
1
;
const
int
numb
=
rnd
.
get_random_32bit_number
()
%
2
+
1
;
for
(
int
num
=
0
;
num
<
numa
;
++
num
)
{
temp
=
gaussian_randm
(
dims
,
1
,
k
++
);
temp
(
key
)
=
0.1
;
//temp = gaussian_randm(dims,1,k++); temp(key) = std::abs(temp(key));
if
(
samp
.
anchor
(
key
)
>
0
)
samp
.
near
.
push_back
(
temp
);
else
samp
.
far
.
push_back
(
temp
);
}
for
(
int
num
=
0
;
num
<
numb
;
++
num
)
{
temp
=
gaussian_randm
(
dims
,
1
,
k
++
);
temp
(
key
)
=
-
0.1
;
//temp = gaussian_randm(dims,1,k++); temp(key) = -std::abs(temp(key));
if
(
samp
.
anchor
(
key
)
<
0
)
samp
.
near
.
push_back
(
temp
);
else
samp
.
far
.
push_back
(
temp
);
}
}
samples
.
push_back
(
samp
);
}
normalizer
.
set_epsilon
(
0.0001
);
normalizer
.
set_c
(
100
);
normalizer
.
set_max_iterations
(
6000
);
normalizer
.
train
(
samples
);
dlog
<<
LINFO
<<
"learned transform:
\n
"
<<
normalizer
.
transform
();
matrix
<
double
,
0
,
1
>
total
;
for
(
unsigned
long
i
=
0
;
i
<
samples
.
size
();
++
i
)
{
samples
[
i
].
anchor
=
normalizer
(
samples
[
i
].
anchor
);
total
+=
samples
[
i
].
anchor
;
for
(
unsigned
long
j
=
0
;
j
<
samples
[
i
].
near
.
size
();
++
j
)
samples
[
i
].
near
[
j
]
=
normalizer
(
samples
[
i
].
near
[
j
]);
for
(
unsigned
long
j
=
0
;
j
<
samples
[
i
].
far
.
size
();
++
j
)
samples
[
i
].
far
[
j
]
=
normalizer
(
samples
[
i
].
far
[
j
]);
}
total
/=
samples
.
size
();
dlog
<<
LINFO
<<
"sample transformed means: "
<<
trans
(
total
);
DLIB_TEST
(
length
(
total
)
<
1e-9
);
check_distance_metrics
(
samples
);
// make sure serialization works
stringstream
os
;
serialize
(
normalizer
,
os
);
vector_normalizer_frobmetric
<
sample_type
>
normalizer2
;
deserialize
(
normalizer2
,
os
);
DLIB_TEST
(
equal
(
normalizer
.
transform
(),
normalizer2
.
transform
()));
DLIB_TEST
(
equal
(
normalizer
.
transformed_means
(),
normalizer2
.
transformed_means
()));
DLIB_TEST
(
normalizer
.
in_vector_size
()
==
normalizer2
.
in_vector_size
());
DLIB_TEST
(
normalizer
.
out_vector_size
()
==
normalizer2
.
out_vector_size
());
DLIB_TEST
(
normalizer
.
get_max_iterations
()
==
normalizer2
.
get_max_iterations
());
DLIB_TEST
(
std
::
abs
(
normalizer
.
get_c
()
-
normalizer2
.
get_c
())
<
1e-14
);
DLIB_TEST
(
std
::
abs
(
normalizer
.
get_epsilon
()
-
normalizer2
.
get_epsilon
())
<
1e-14
);
}
void
perform_test
(
)
{
dlib
::
rand
rnd
;
for
(
int
i
=
0
;
i
<
5
;
++
i
)
test_vector_normalizer_frobmetric
(
rnd
);
test_random_subset_selector
();
test_random_subset_selector2
();
test_running_covariance
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment