Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
b51d1148
Commit
b51d1148
authored
Jan 19, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Made the svd_fast() code a little more readable and memory efficient.
Also added the orthogonalize() function.
parent
246a60c2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
62 additions
and
21 deletions
+62
-21
matrix_la.h
dlib/matrix/matrix_la.h
+38
-21
matrix_la_abstract.h
dlib/matrix/matrix_la_abstract.h
+24
-0
No files found.
dlib/matrix/matrix_la.h
View file @
b51d1148
...
...
@@ -816,6 +816,22 @@ convergence:
#endif
}
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
long
NR
,
long
NC
,
typename
MM
,
typename
L
>
void
orthogonalize
(
matrix
<
T
,
NR
,
NC
,
MM
,
L
>&
m
)
{
qr_decomposition
<
matrix
<
T
,
NR
,
NC
,
MM
,
L
>
>
(
m
).
get_q
(
m
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
...
...
@@ -845,23 +861,21 @@ convergence:
!*/
{
DLIB_ASSERT
(
A
.
nr
()
>=
(
long
)
l
,
"Invalid inputs were given to this function."
);
matrix
<
T
>
G
=
matrix_cast
<
T
>
(
gaussian_randm
(
A
.
nc
(),
l
));
matrix
<
T
>
Y
=
A
*
G
;
Q
=
A
*
matrix_cast
<
T
>
(
gaussian_randm
(
A
.
nc
(),
l
));
Q
=
qr_decomposition
<
matrix
<
T
>
>
(
Y
).
get_q
(
);
orthogonalize
(
Q
);
// Do some extra iterations of the power method to make sure we get Q into the
// span of the most important singular vectors of A.
if
(
q
!=
0
)
{
matrix
<
T
>
Z
;
for
(
unsigned
long
itr
=
0
;
itr
<
q
;
++
itr
)
{
Z
=
trans
(
A
)
*
Q
;
Z
=
qr_decomposition
<
matrix
<
T
>
>
(
Z
).
get_q
(
);
Q
=
trans
(
A
)
*
Q
;
orthogonalize
(
Q
);
Y
=
A
*
Z
;
Q
=
qr_decomposition
<
matrix
<
T
>
>
(
Y
).
get_q
(
);
Q
=
A
*
Q
;
orthogonalize
(
Q
);
}
}
}
...
...
@@ -928,27 +942,27 @@ convergence:
!*/
{
DLIB_ASSERT
(
A
.
size
()
>=
l
,
"Invalid inputs were given to this function."
);
matrix
<
T
>
Y
(
A
.
size
(),
l
);
Q
.
set_size
(
A
.
size
(),
l
);
// Compute
Y
= A*gaussian_randm()
for
(
long
r
=
0
;
r
<
Y
.
nr
();
++
r
)
// Compute
Q
= A*gaussian_randm()
for
(
long
r
=
0
;
r
<
Q
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
Y
.
nc
();
++
c
)
for
(
long
c
=
0
;
c
<
Q
.
nc
();
++
c
)
{
Y
(
r
,
c
)
=
dot
(
A
[
r
],
gaussian_randm
(
std
::
numeric_limits
<
long
>::
max
(),
1
,
c
));
Q
(
r
,
c
)
=
dot
(
A
[
r
],
gaussian_randm
(
std
::
numeric_limits
<
long
>::
max
(),
1
,
c
));
}
}
Q
=
qr_decomposition
<
matrix
<
T
>
>
(
Y
).
get_q
(
);
orthogonalize
(
Q
);
// Do some extra iterations of the power method to make sure we get Q into the
// span of the most important singular vectors of A.
if
(
q
!=
0
)
{
const
unsigned
long
n
=
max_index_plus_one
(
A
);
matrix
<
T
>
Z
(
n
,
l
);
for
(
unsigned
long
itr
=
0
;
itr
<
q
;
++
itr
)
{
matrix
<
T
>
Z
(
n
,
l
);
// Compute Z = trans(A)*Q
Z
=
0
;
for
(
unsigned
long
m
=
0
;
m
<
A
.
size
();
++
m
)
...
...
@@ -966,18 +980,21 @@ convergence:
}
}
Z
=
qr_decomposition
<
matrix
<
T
>
>
(
Z
).
get_q
();
Q
.
set_size
(
0
,
0
);
// free RAM
orthogonalize
(
Z
);
// Compute Y = A*Z
for
(
long
r
=
0
;
r
<
Y
.
nr
();
++
r
)
// Compute Q = A*Z
Q
.
set_size
(
A
.
size
(),
l
);
for
(
long
r
=
0
;
r
<
Q
.
nr
();
++
r
)
{
for
(
long
c
=
0
;
c
<
Y
.
nc
();
++
c
)
for
(
long
c
=
0
;
c
<
Q
.
nc
();
++
c
)
{
Y
(
r
,
c
)
=
dot
(
A
[
r
],
colm
(
Z
,
c
));
Q
(
r
,
c
)
=
dot
(
A
[
r
],
colm
(
Z
,
c
));
}
}
Q
=
qr_decomposition
<
matrix
<
T
>
>
(
Y
).
get_q
();
Z
.
set_size
(
0
,
0
);
// free RAM
orthogonalize
(
Q
);
}
}
}
...
...
dlib/matrix/matrix_la_abstract.h
View file @
b51d1148
...
...
@@ -235,6 +235,30 @@ namespace dlib
Therefore, it is very fast and suitable for use with very large matrices.
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
T
,
long
NR
,
long
NC
,
typename
MM
,
typename
L
>
void
orthogonalize
(
matrix
<
T
,
NR
,
NC
,
MM
,
L
>&
m
);
/*!
requires
- m.nr() >= m.nc()
- m.size() > 0
ensures
- #m == an orthogonal matrix with the same dimensions as m. In particular,
the columns of #m have the same span as the columns of m.
- trans(#m)*#m == identity matrix
- This function is just shorthand for performing the QR decomposition of m
and then storing the Q factor into #m.
!*/
// ----------------------------------------------------------------------------------------
const
matrix
real_eigenvalues
(
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment