Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
b73dacc1
Commit
b73dacc1
authored
May 22, 2016
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fixing tests
parent
7f77ec65
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
22 additions
and
22 deletions
+22
-22
dnn.cpp
dlib/test/dnn.cpp
+22
-22
No files found.
dlib/test/dnn.cpp
View file @
b73dacc1
...
...
@@ -165,13 +165,13 @@ namespace
resizable_tensor
running_means
;
resizable_tensor
running_variances
;
batch_normalize
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
const
double
scale
=
(
src
.
num_samples
())
/
(
src
.
num_samples
()
-
1.0
);
// Turn back into biased variance estimate because that's how batch_normalize() works, so if we want to match it this is necessary.
running_variances
=
mat
(
running_variances
)
/
scale
;
batch_normalize_inference
(
dest2
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
batch_normalize_inference
(
DEFAULT_BATCH_NORM_EPS
,
dest2
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
DLIB_TEST_MSG
(
max
(
abs
(
mat
(
dest2
)
-
mat
(
dest
)))
<
1e-5
,
max
(
abs
(
mat
(
dest2
)
-
mat
(
dest
))));
cpu
::
batch_normalize_inference
(
dest3
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
cpu
::
batch_normalize_inference
(
DEFAULT_BATCH_NORM_EPS
,
dest3
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
DLIB_TEST_MSG
(
max
(
abs
(
mat
(
dest3
)
-
mat
(
dest
)))
<
1e-5
,
max
(
abs
(
mat
(
dest3
)
-
mat
(
dest
))));
...
...
@@ -179,7 +179,7 @@ namespace
auto
f
=
[
&
](
float
eps
)
{
const
float
old
=
src
.
host
()[
idx
];
src
.
host
()[
idx
]
+=
eps
;
batch_normalize
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
float
result
=
dot
(
gradient_input
,
dest
);
src
.
host
()[
idx
]
=
old
;
return
result
;
...
...
@@ -191,7 +191,7 @@ namespace
auto
f
=
[
&
](
float
eps
)
{
const
float
old
=
gamma
.
host
()[
idx
];
gamma
.
host
()[
idx
]
+=
eps
;
batch_normalize
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
float
result
=
dot
(
gradient_input
,
dest
);
gamma
.
host
()[
idx
]
=
old
;
return
result
;
...
...
@@ -203,7 +203,7 @@ namespace
auto
f
=
[
&
](
float
eps
)
{
const
float
old
=
beta
.
host
()[
idx
];
beta
.
host
()[
idx
]
+=
eps
;
batch_normalize
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
float
result
=
dot
(
gradient_input
,
dest
);
beta
.
host
()[
idx
]
=
old
;
return
result
;
...
...
@@ -220,7 +220,7 @@ namespace
gamma_grad
=
8
;
beta_grad
=
8
;
batch_normalize_gradient
(
gradient_input
,
means
,
vars
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
batch_normalize_gradient
(
DEFAULT_BATCH_NORM_EPS
,
gradient_input
,
means
,
vars
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
auto
grad_error
=
compare_gradients
(
src_grad
,
grad_src
);
dlog
<<
LINFO
<<
"src error: "
<<
grad_error
;
...
...
@@ -250,14 +250,14 @@ namespace
resizable_tensor
running_means
;
resizable_tensor
running_variances
;
batch_normalize_conv
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize_conv
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
const
double
scale
=
(
src
.
num_samples
()
*
src
.
nr
()
*
src
.
nc
())
/
(
src
.
num_samples
()
*
src
.
nr
()
*
src
.
nc
()
-
1.0
);
// Turn back into biased variance estimate because that's how
// batch_normalize_conv() works, so if we want to match it this is necessary.
running_variances
=
mat
(
running_variances
)
/
scale
;
batch_normalize_conv_inference
(
dest2
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
batch_normalize_conv_inference
(
DEFAULT_BATCH_NORM_EPS
,
dest2
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
DLIB_TEST
(
max
(
abs
(
mat
(
dest2
)
-
mat
(
dest
)))
<
1e-5
);
cpu
::
batch_normalize_conv_inference
(
dest3
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
cpu
::
batch_normalize_conv_inference
(
DEFAULT_BATCH_NORM_EPS
,
dest3
,
src
,
gamma
,
beta
,
running_means
,
running_variances
);
DLIB_TEST
(
max
(
abs
(
mat
(
dest3
)
-
mat
(
dest
)))
<
1e-5
);
...
...
@@ -265,7 +265,7 @@ namespace
auto
f
=
[
&
](
float
eps
)
{
const
float
old
=
src
.
host
()[
idx
];
src
.
host
()[
idx
]
+=
eps
;
batch_normalize_conv
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize_conv
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
float
result
=
dot
(
gradient_input
,
dest
);
src
.
host
()[
idx
]
=
old
;
return
result
;
...
...
@@ -277,7 +277,7 @@ namespace
auto
f
=
[
&
](
float
eps
)
{
const
float
old
=
gamma
.
host
()[
idx
];
gamma
.
host
()[
idx
]
+=
eps
;
batch_normalize_conv
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize_conv
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
float
result
=
dot
(
gradient_input
,
dest
);
gamma
.
host
()[
idx
]
=
old
;
return
result
;
...
...
@@ -289,7 +289,7 @@ namespace
auto
f
=
[
&
](
float
eps
)
{
const
float
old
=
beta
.
host
()[
idx
];
beta
.
host
()[
idx
]
+=
eps
;
batch_normalize_conv
(
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
batch_normalize_conv
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
vars
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
float
result
=
dot
(
gradient_input
,
dest
);
beta
.
host
()[
idx
]
=
old
;
return
result
;
...
...
@@ -307,7 +307,7 @@ namespace
gamma_grad
=
9
;
beta_grad
=
9
;
batch_normalize_conv_gradient
(
gradient_input
,
means
,
vars
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
batch_normalize_conv_gradient
(
DEFAULT_BATCH_NORM_EPS
,
gradient_input
,
means
,
vars
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
auto
grad_error
=
compare_gradients
(
src_grad
,
grad_src
);
...
...
@@ -888,8 +888,8 @@ namespace
rnd
.
fill_uniform
(
src
);
cpu
::
batch_normalize
(
dest
,
means
,
invstds
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
cuda
::
batch_normalize
(
dest2
,
means2
,
invstds2
,
1
,
running_means2
,
running_variances2
,
src
,
gamma
,
beta
);
cpu
::
batch_normalize
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
invstds
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
cuda
::
batch_normalize
(
DEFAULT_BATCH_NORM_EPS
,
dest2
,
means2
,
invstds2
,
1
,
running_means2
,
running_variances2
,
src
,
gamma
,
beta
);
dlog
<<
LINFO
<<
"dest error: "
<<
max
(
abs
(
mat
(
dest
)
-
mat
(
dest2
)));
dlog
<<
LINFO
<<
"means error: "
<<
max
(
abs
(
mat
(
means
)
-
mat
(
means2
)));
...
...
@@ -915,8 +915,8 @@ namespace
rnd
.
fill_uniform
(
gradient_input
);
cpu
::
batch_normalize_gradient
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
cuda
::
batch_normalize_gradient
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad2
,
gamma_grad2
,
beta_grad2
);
cpu
::
batch_normalize_gradient
(
DEFAULT_BATCH_NORM_EPS
,
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
cuda
::
batch_normalize_gradient
(
DEFAULT_BATCH_NORM_EPS
,
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad2
,
gamma_grad2
,
beta_grad2
);
dlog
<<
LINFO
<<
"src_grad error: "
<<
max
(
abs
(
mat
(
src_grad
)
-
mat
(
src_grad2
)));
dlog
<<
LINFO
<<
"gamma_grad error: "
<<
max
(
abs
(
mat
(
gamma_grad
)
-
mat
(
gamma_grad2
)));
...
...
@@ -942,8 +942,8 @@ namespace
tt
::
tensor_rand
rnd
;
rnd
.
fill_uniform
(
src
);
cpu
::
batch_normalize_conv
(
dest
,
means
,
invstds
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
cuda
::
batch_normalize_conv
(
dest2
,
means2
,
invstds2
,
1
,
running_means2
,
running_variances2
,
src
,
gamma
,
beta
);
cpu
::
batch_normalize_conv
(
DEFAULT_BATCH_NORM_EPS
,
dest
,
means
,
invstds
,
1
,
running_means
,
running_variances
,
src
,
gamma
,
beta
);
cuda
::
batch_normalize_conv
(
DEFAULT_BATCH_NORM_EPS
,
dest2
,
means2
,
invstds2
,
1
,
running_means2
,
running_variances2
,
src
,
gamma
,
beta
);
dlog
<<
LINFO
<<
"dest error: "
<<
max
(
abs
(
mat
(
dest
)
-
mat
(
dest2
)));
dlog
<<
LINFO
<<
"means error: "
<<
max
(
abs
(
mat
(
means
)
-
mat
(
means2
)));
...
...
@@ -967,8 +967,8 @@ namespace
rnd
.
fill_uniform
(
gradient_input
);
cpu
::
batch_normalize_conv_gradient
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
cuda
::
batch_normalize_conv_gradient
(
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad2
,
gamma_grad2
,
beta_grad2
);
cpu
::
batch_normalize_conv_gradient
(
DEFAULT_BATCH_NORM_EPS
,
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad
,
gamma_grad
,
beta_grad
);
cuda
::
batch_normalize_conv_gradient
(
DEFAULT_BATCH_NORM_EPS
,
gradient_input
,
means
,
invstds
,
src
,
gamma
,
src_grad2
,
gamma_grad2
,
beta_grad2
);
dlog
<<
LINFO
<<
"src_grad error: "
<<
max
(
abs
(
mat
(
src_grad
)
-
mat
(
src_grad2
)));
dlog
<<
LINFO
<<
"gamma_grad error: "
<<
max
(
abs
(
mat
(
gamma_grad
)
-
mat
(
gamma_grad2
)));
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment