Commit b7a02418 authored by Davis King's avatar Davis King

Refactored the svm_nu_trainer. Specifically, I pulled the quadratic

solver out and made it a separate class.  The kernel_matrix_cache has also
been removed in favor of the new symmetric_matrix_cache.  Finally, the
remaining bits of the svm_nu_trainer have been moved into svm_nu_trainer.h

Also note that invalid_svm_nu_error has been renamed to invalid_nu_error.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403994
parent dbba600f
......@@ -6,6 +6,7 @@
#include "optimization/optimization.h"
#include "optimization/optimization_bobyqa.h"
#include "optimization/optimization_solve_qp_using_smo.h"
#include "optimization/optimization_solve_qp2_using_smo.h"
#include "optimization/optimization_oca.h"
#include "optimization/optimization_trust_region.h"
#include "optimization/optimization_least_squares.h"
......
This diff is collapsed.
// Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_OPTIMIZATION_SOLVE_QP2_USING_SMO_ABSTRACT_H_
#ifdef DLIB_OPTIMIZATION_SOLVE_QP2_USING_SMO_ABSTRACT_H_
#include "../matrix/matrix_abstract.h"
#include "../algs.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
class invalid_nu_error : public dlib::error
{
/*!
WHAT THIS OBJECT REPRESENTS
This object is an exception class used to indicate that a
value of nu given to the solve_qp2_using_smo object is incompatible
with the constraints of the quadratic program.
this->nu will be set to the invalid value of nu used.
!*/
public:
invalid_nu_error(const std::string& msg, double nu_) : dlib::error(msg), nu(nu_) {};
const double nu;
};
// ----------------------------------------------------------------------------------------
template <
typename T
>
typename T::type maximum_nu (
const T& y
);
/*!
requires
- T == a matrix object or an object convertible to a matrix via vector_to_matrix()
- is_col_vector(y) == true
- y.size() > 1
- sum((y == +1) + (y == -1)) == y.size()
(i.e. all elements of y must be equal to +1 or -1)
ensures
- returns the maximum valid nu that can be used with solve_qp2_using_smo and
the given y vector.
(i.e. 2.0*min(sum(y == +1), sum(y == -1))/y.size())
!*/
// ----------------------------------------------------------------------------------------
template <
typename matrix_type
>
class solve_qp2_using_smo
{
/*!
REQUIREMENTS ON matrix_type
Must be some type of dlib::matrix.
WHAT THIS OBJECT REPRESENTS
This object is a tool for solving the following quadratic programming
problem using the sequential minimal optimization algorithm:
Minimize: f(alpha) == 0.5*trans(alpha)*Q*alpha
subject to the following constraints:
- sum(alpha) == nu*y.size()
- 0 <= min(alpha) && max(alpha) <= 1
- trans(y)*alpha == 0
Where f is convex. This means that Q should be symmetric and positive-semidefinite.
This object implements the strategy used by the LIBSVM tool and described
by the following papers:
- Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms
- Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
!*/
public:
typedef typename matrix_type::mem_manager_type mem_manager_type;
typedef typename matrix_type::type scalar_type;
typedef typename matrix_type::layout_type layout_type;
typedef matrix<scalar_type,0,0,mem_manager_type,layout_type> general_matrix;
typedef matrix<scalar_type,0,1,mem_manager_type,layout_type> column_matrix;
template <
typename EXP1,
typename EXP2,
long NR
>
void operator() (
const matrix_exp<EXP1>& Q,
const matrix_exp<EXP2>& y,
const scalar_type nu,
matrix<scalar_type,NR,1,mem_manager_type, layout_type>& alpha,
scalar_type eps
);
/*!
requires
- Q.nr() == Q.nc()
- is_col_vector(y) == true
- y.size() == Q.nr()
- y.size() > 1
- sum((y == +1) + (y == -1)) == y.size()
(i.e. all elements of y must be equal to +1 or -1)
- alpha must be capable of representing a vector of size y.size() elements
- 0 < nu <= 1
- eps > 0
ensures
- This function solves the quadratic program defined in this class's main comment.
- The solution to the quadratic program will be stored in #alpha.
- #alpha.size() == y.size()
- This function uses an implementation of the sequential minimal optimization
algorithm. It runs until the KKT violation is less than eps. So eps controls
how accurate the solution is and smaller values result in better solutions.
(a reasonable eps is usually about 1e-3)
- #get_gradient() == Q*(#alpha)
(i.e. stores the gradient of f() at #alpha in get_gradient())
throws
- invalid_nu_error
This exception is thrown if nu >= maximum_nu(y).
(some values of nu cause the constraints to become impossible to satisfy.
If this is detected then an exception is thrown).
!*/
const column_matrix& get_gradient (
) const;
/*!
ensures
- returns the gradient vector at the solution of the last problem solved
by this object. If no problem has been solved then returns an empty
vector.
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_OPTIMIZATION_SOLVE_QP2_USING_SMO_ABSTRACT_H_
This diff is collapsed.
......@@ -11,52 +11,13 @@
#include "../serialize.h"
#include "function_abstract.h"
#include "kernel_abstract.h"
#include "svm_nu_trainer_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class invalid_svm_nu_error : public dlib::error
{
/*!
WHAT THIS OBJECT REPRESENTS
This object is an exception class used to indicate that a
value of nu used for svm training is incompatible with a
particular data set.
this->nu will be set to the invalid value of nu used.
!*/
public:
invalid_svm_nu_error(const std::string& msg, double nu_) : dlib::error(msg), nu(nu_) {};
const double nu;
};
// ----------------------------------------------------------------------------------------
template <
typename T
>
typename T::type maximum_nu (
const T& y
);
/*!
requires
- T == a matrix object or an object convertible to a matrix via
vector_to_matrix()
- y.nc() == 1
- y.nr() > 1
- for all valid i:
- y(i) == -1 or +1
ensures
- returns the maximum valid nu that can be used with the svm_nu_trainer and
the training set labels from the given y vector.
(i.e. 2.0*min(number of +1 examples in y, number of -1 examples in y)/y.nr())
!*/
// ----------------------------------------------------------------------------------------
template <
......@@ -85,189 +46,6 @@ namespace dlib
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <
typename K
>
class svm_nu_trainer
{
/*!
REQUIREMENTS ON K
is a kernel function object as defined in dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object implements a trainer for a nu support vector machine for
solving binary classification problems.
The implementation of the nu-svm training algorithm used by this object is based
on the following excellent papers:
- Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms
- Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
!*/
public:
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
svm_nu_trainer (
);
/*!
ensures
- This object is properly initialized and ready to be used
to train a support vector machine.
- #get_nu() == 0.1
- #get_cache_size() == 200
- #get_epsilon() == 0.001
!*/
svm_nu_trainer (
const kernel_type& kernel,
const scalar_type& nu
);
/*!
requires
- 0 < nu <= 1
ensures
- This object is properly initialized and ready to be used
to train a support vector machine.
- #get_kernel() == kernel
- #get_nu() == nu
- #get_cache_size() == 200
- #get_epsilon() == 0.001
!*/
void set_cache_size (
long cache_size
);
/*!
requires
- cache_size > 0
ensures
- #get_cache_size() == cache_size
!*/
const long get_cache_size (
) const;
/*!
ensures
- returns the number of megabytes of cache this object will use
when it performs training via the this->train() function.
(bigger values of this may make training go faster but won't affect
the result. However, too big a value will cause you to run out of
memory, obviously.)
!*/
void set_epsilon (
scalar_type eps
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
const scalar_type get_epsilon (
) const;
/*!
ensures
- returns the error epsilon that determines when training should stop.
Generally a good value for this is 0.001. Smaller values may result
in a more accurate solution but take longer to execute.
!*/
void set_kernel (
const kernel_type& k
);
/*!
ensures
- #get_kernel() == k
!*/
const kernel_type& get_kernel (
) const;
/*!
ensures
- returns a copy of the kernel function in use by this object
!*/
void set_nu (
scalar_type nu
);
/*!
requires
- 0 < nu <= 1
ensures
- #get_nu() == nu
!*/
const scalar_type get_nu (
) const;
/*!
ensures
- returns the nu svm parameter. This is a value between 0 and
1. It is the parameter that determines the trade off between
trying to fit the training data exactly or allowing more errors
but hopefully improving the generalization ability of the
resulting classifier. Smaller values encourage exact fitting
while larger values of nu may encourage better generalization.
For more information you should consult the papers referenced
above.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const;
/*!
requires
- is_binary_classification_problem(x,y) == true
- x == a matrix or something convertible to a matrix via vector_to_matrix().
Also, x should contain sample_type objects.
- y == a matrix or something convertible to a matrix via vector_to_matrix().
Also, y should contain scalar_type objects.
ensures
- trains a nu support vector classifier given the training samples in x and
labels in y. Training is done when the error is less than get_epsilon().
- returns a decision function F with the following properties:
- if (new_x is a sample predicted have +1 label) then
- F(new_x) >= 0
- else
- F(new_x) < 0
throws
- invalid_svm_nu_error
This exception is thrown if get_nu() >= maximum_nu(y)
- std::bad_alloc
!*/
void swap (
svm_nu_trainer& item
);
/*!
ensures
- swaps *this and item
!*/
};
template <typename K>
void swap (
svm_nu_trainer<K>& a,
svm_nu_trainer<K>& b
) { a.swap(b); }
/*!
provides a global swap
!*/
// ----------------------------------------------------------------------------------------
template <
......@@ -288,9 +66,8 @@ namespace dlib
- is_binary_classification_problem(x,y) == true
- trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer)
ensures
- trains a nu support vector classifier given the training samples in x and
labels in y.
- returns a probabilistic_decision_function that represents the trained svm.
- trains a classifier given the training samples in x and labels in y.
- returns a probabilistic_decision_function that represents the trained classifier.
- The parameters of the probability model are estimated by performing k-fold
cross validation.
- The number of folds used is given by the folds argument.
......
This diff is collapsed.
// Copyright (C) 2007 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_SVm_NU_TRAINER_ABSTRACT_
#ifdef DLIB_SVm_NU_TRAINER_ABSTRACT_
#include <cmath>
#include <limits>
#include <sstream>
#include "../matrix/matrix_abstract.h"
#include "../algs.h"
#include "../serialize.h"
#include "function_abstract.h"
#include "kernel_abstract.h"
#include "../optimization/optimization_solve_qp2_using_smo_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename K
>
class svm_nu_trainer
{
/*!
REQUIREMENTS ON K
is a kernel function object as defined in dlib/svm/kernel_abstract.h
WHAT THIS OBJECT REPRESENTS
This object implements a trainer for a nu support vector machine for
solving binary classification problems.
The implementation of the nu-svm training algorithm used by this object is based
on the following excellent papers:
- Chang and Lin, Training {nu}-Support Vector Classifiers: Theory and Algorithms
- Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
!*/
public:
typedef K kernel_type;
typedef typename kernel_type::scalar_type scalar_type;
typedef typename kernel_type::sample_type sample_type;
typedef typename kernel_type::mem_manager_type mem_manager_type;
typedef decision_function<kernel_type> trained_function_type;
svm_nu_trainer (
);
/*!
ensures
- This object is properly initialized and ready to be used
to train a support vector machine.
- #get_nu() == 0.1
- #get_cache_size() == 200
- #get_epsilon() == 0.001
!*/
svm_nu_trainer (
const kernel_type& kernel,
const scalar_type& nu
);
/*!
requires
- 0 < nu <= 1
ensures
- This object is properly initialized and ready to be used
to train a support vector machine.
- #get_kernel() == kernel
- #get_nu() == nu
- #get_cache_size() == 200
- #get_epsilon() == 0.001
!*/
void set_cache_size (
long cache_size
);
/*!
requires
- cache_size > 0
ensures
- #get_cache_size() == cache_size
!*/
const long get_cache_size (
) const;
/*!
ensures
- returns the number of megabytes of cache this object will use
when it performs training via the this->train() function.
(bigger values of this may make training go faster but won't affect
the result. However, too big a value will cause you to run out of
memory, obviously.)
!*/
void set_epsilon (
scalar_type eps
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
const scalar_type get_epsilon (
) const;
/*!
ensures
- returns the error epsilon that determines when training should stop.
Generally a good value for this is 0.001. Smaller values may result
in a more accurate solution but take longer to execute.
!*/
void set_kernel (
const kernel_type& k
);
/*!
ensures
- #get_kernel() == k
!*/
const kernel_type& get_kernel (
) const;
/*!
ensures
- returns a copy of the kernel function in use by this object
!*/
void set_nu (
scalar_type nu
);
/*!
requires
- 0 < nu <= 1
ensures
- #get_nu() == nu
!*/
const scalar_type get_nu (
) const;
/*!
ensures
- returns the nu svm parameter. This is a value between 0 and
1. It is the parameter that determines the trade off between
trying to fit the training data exactly or allowing more errors
but hopefully improving the generalization ability of the
resulting classifier. Smaller values encourage exact fitting
while larger values of nu may encourage better generalization.
For more information you should consult the papers referenced
above.
!*/
template <
typename in_sample_vector_type,
typename in_scalar_vector_type
>
const decision_function<kernel_type> train (
const in_sample_vector_type& x,
const in_scalar_vector_type& y
) const;
/*!
requires
- is_binary_classification_problem(x,y) == true
- x == a matrix or something convertible to a matrix via vector_to_matrix().
Also, x should contain sample_type objects.
- y == a matrix or something convertible to a matrix via vector_to_matrix().
Also, y should contain scalar_type objects.
ensures
- trains a nu support vector classifier given the training samples in x and
labels in y. Training is done when the error is less than get_epsilon().
- returns a decision function F with the following properties:
- if (new_x is a sample predicted have +1 label) then
- F(new_x) >= 0
- else
- F(new_x) < 0
throws
- invalid_nu_error
This exception is thrown if get_nu() >= maximum_nu(y)
- std::bad_alloc
!*/
void swap (
svm_nu_trainer& item
);
/*!
ensures
- swaps *this and item
!*/
};
template <typename K>
void swap (
svm_nu_trainer<K>& a,
svm_nu_trainer<K>& b
) { a.swap(b); }
/*!
provides a global swap
!*/
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SVm_NU_TRAINER_ABSTRACT_
......@@ -58,7 +58,7 @@ namespace dlib
// on very large datasets. Every bit of freed memory helps out.
j = job<trainer_type>();
}
catch (invalid_svm_nu_error&)
catch (invalid_nu_error&)
{
// If this is a svm_nu_trainer then we might get this exception if the nu is
// invalid. In this case just return a cross validation score of 0.
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment