Commit b975cdf6 authored by Davis King's avatar Davis King

Cleaned up this code, filled out spec, added asserts.

parent 78dc4a1b
...@@ -27,6 +27,14 @@ namespace dlib ...@@ -27,6 +27,14 @@ namespace dlib
mpc( mpc(
) )
{ {
A = 0;
B = 0;
C = 0;
Q = 0;
R = 0;
lower = 0;
upper = 0;
max_iterations = 0; max_iterations = 0;
eps = 0.01; eps = 0.01;
for (unsigned long i = 0; i < horizon; ++i) for (unsigned long i = 0; i < horizon; ++i)
...@@ -50,6 +58,48 @@ namespace dlib ...@@ -50,6 +58,48 @@ namespace dlib
const matrix<double,I,1>& upper_ const matrix<double,I,1>& upper_
) : A(A_), B(B_), C(C_), Q(Q_), R(R_), lower(lower_), upper(upper_) ) : A(A_), B(B_), C(C_), Q(Q_), R(R_), lower(lower_), upper(upper_)
{ {
// make sure requires clause is not broken
DLIB_ASSERT(A.nr() > 0 && B.nc() > 0,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t A.nr(): " << A.nr()
<< "\n\t B.nc(): " << B.nc()
);
DLIB_ASSERT(A.nr() == A.nc() &&
A.nr() == B.nr() &&
A.nr() == C.nr() &&
A.nr() == Q.nr(),
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t A.nr(): " << A.nr()
<< "\n\t A.nc(): " << A.nc()
<< "\n\t B.nr(): " << B.nr()
<< "\n\t C.nr(): " << C.nr()
<< "\n\t Q.nr(): " << Q.nr()
);
DLIB_ASSERT(
B.nc() == R.nr() &&
B.nc() == lower.nr() &&
B.nc() == upper.nr() ,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t B.nr(): " << B.nr()
<< "\n\t B.nc(): " << B.nc()
<< "\n\t lower.nr(): " << lower.nr()
<< "\n\t upper.nr(): " << upper.nr()
);
DLIB_ASSERT(min(Q) >= 0 &&
min(R) > 0 &&
min(upper-lower) >= 0,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t min(Q): " << min(Q)
<< "\n\t min(R): " << min(R)
<< "\n\t min(upper-lower): " << min(upper-lower)
);
max_iterations = 10000; max_iterations = 10000;
eps = 0.01; eps = 0.01;
for (unsigned long i = 0; i < horizon; ++i) for (unsigned long i = 0; i < horizon; ++i)
...@@ -93,6 +143,13 @@ namespace dlib ...@@ -93,6 +143,13 @@ namespace dlib
const unsigned long time const unsigned long time
) )
{ {
DLIB_ASSERT(time < horizon,
"\t void mpc::set_target(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t time: " << time
<< "\n\t horizon: " << horizon
);
target[time] = val; target[time] = val;
} }
...@@ -107,6 +164,14 @@ namespace dlib ...@@ -107,6 +164,14 @@ namespace dlib
const unsigned long time const unsigned long time
) const ) const
{ {
// make sure requires clause is not broken
DLIB_ASSERT(time < horizon,
"\t matrix mpc::get_target(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t time: " << time
<< "\n\t horizon: " << horizon
);
return target[time]; return target[time];
} }
...@@ -126,7 +191,7 @@ namespace dlib ...@@ -126,7 +191,7 @@ namespace dlib
{ {
// make sure requires clause is not broken // make sure requires clause is not broken
DLIB_ASSERT(eps_ > 0, DLIB_ASSERT(eps_ > 0,
"\tvoid mpc::set_epsilon(eps_)" "\t void mpc::set_epsilon(eps_)"
<< "\n\t invalid inputs were given to this function" << "\n\t invalid inputs were given to this function"
<< "\n\t eps_: " << eps_ << "\n\t eps_: " << eps_
); );
...@@ -143,6 +208,15 @@ namespace dlib ...@@ -143,6 +208,15 @@ namespace dlib
const matrix<double,S,1>& current_state const matrix<double,S,1>& current_state
) )
{ {
// make sure requires clause is not broken
DLIB_ASSERT(min(R) > 0 && A.nr() == current_state.size(),
"\t matrix mpc::operator(current_state)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t min(R): " << min(R)
<< "\n\t A.nr(): " << A.nr()
<< "\n\t current_state.size(): " << current_state.size()
);
// Shift the inputs over by one time step so we can use them to warm start the // Shift the inputs over by one time step so we can use them to warm start the
// optimizer. // optimizer.
for (unsigned long i = 1; i < horizon; ++i) for (unsigned long i = 1; i < horizon; ++i)
...@@ -171,11 +245,6 @@ namespace dlib ...@@ -171,11 +245,6 @@ namespace dlib
const matrix<double,S,1>& initial_state const matrix<double,S,1>& initial_state
) )
{ {
DLIB_CASSERT(min(Q) >= 0, "");
DLIB_CASSERT(min(R) > 0, "");
// make it so MM == trans(K)*Q*(M-target) // make it so MM == trans(K)*Q*(M-target)
M[0] = A*initial_state + C; M[0] = A*initial_state + C;
for (unsigned long i = 1; i < horizon; ++i) for (unsigned long i = 1; i < horizon; ++i)
......
...@@ -25,17 +25,40 @@ namespace dlib ...@@ -25,17 +25,40 @@ namespace dlib
I_ >= 0 I_ >= 0
WHAT THIS OBJECT REPRESENTS WHAT THIS OBJECT REPRESENTS
Based largely on This object implements a linear model predictive controller. To explain
A Fast Gradient method for embedded linear predictive control what that means, suppose you have some process you want to control and the
by Markus Kogel and Rolf Findeisen process dynamics are described by the linear equation:
x_{i+1} = A*x_i + B*u_i + C
That is, the next state the system goes into is a linear function of its
current state (x_i) and the current control (u_i) plus some constant bias
or disturbance.
A model predictive controller can find the control (u) you should apply to
drive the state (x) to some reference value, or alternatively to make the
state track some reference time-varying sequence. It does this by
simulating the process for horizon_ time steps and selecting the control
that leads to the best performance over the next horizon_ steps.
To be precise, each time you ask this object for a control, it solves the
following quadratic program:
min sum_i ( 0.5*trans(x_i)*Q*x_i + 0.5*trans(u_i)*R*u_i ) min sum_i trans(x_i-target_i)*Q*(x_i-target_i) + trans(u_i)*R*u_i
x_i,u_i x_i,u_i
such that: x_0 == current_state such that: x_0 == current_state
x_{i+1} == A*x_i + B*u_i + C x_{i+1} == A*x_i + B*u_i + C
0 <= i < horizon lower <= u_i <= upper
0 <= i < horizon_
and reports u_0 as the control you should take given that you are currently
in current_state. Q and R are user supplied matrices that define how we
penalize variations away from the target state as well as how much we want
to avoid generating large control signals.
Finally, the algorithm we use to solve this quadratic program is based
largely on the method described in:
A Fast Gradient method for embedded linear predictive control (2011)
by Markus Kogel and Rolf Findeisen
!*/ !*/
public: public:
...@@ -49,8 +72,8 @@ namespace dlib ...@@ -49,8 +72,8 @@ namespace dlib
/*! /*!
ensures ensures
- #get_max_iterations() == 0 - #get_max_iterations() == 0
- The values of the A,B,C,Q,R,lower, and upper parameter matrices are - The A,B,C,Q,R,lower, and upper parameter matrices are filled with zeros.
undefined. To use this object you must initialize it via the constructor Therefore, to use this object you must initialize it via the constructor
that supplies these parameters. that supplies these parameters.
!*/ !*/
...@@ -71,7 +94,7 @@ namespace dlib ...@@ -71,7 +94,7 @@ namespace dlib
- B.nc() == R.nr() == lower.nr() == upper.nr() - B.nc() == R.nr() == lower.nr() == upper.nr()
- min(Q) >= 0 - min(Q) >= 0
- min(R) > 0 - min(R) > 0
- min(upper-lower) > 0 - min(upper-lower) >= 0
ensures ensures
- #get_A() == A - #get_A() == A
- #get_B() == B - #get_B() == B
...@@ -83,28 +106,64 @@ namespace dlib ...@@ -83,28 +106,64 @@ namespace dlib
- for all valid i: - for all valid i:
- get_target(i) == a vector of all zeros - get_target(i) == a vector of all zeros
- get_target(i).size() == A.nr() - get_target(i).size() == A.nr()
- #get_max_iterations() == 10000
- #get_epsilon() == 0.01
!*/ !*/
const matrix<double,S,S>& get_A ( const matrix<double,S,S>& get_A (
) const; ) const;
/*!
ensures
- returns the A matrix from the quadratic program defined above.
!*/
const matrix<double,S,I>& get_B ( const matrix<double,S,I>& get_B (
) const; ) const;
/*!
ensures
- returns the B matrix from the quadratic program defined above.
!*/
const matrix<double,S,1>& get_C ( const matrix<double,S,1>& get_C (
) const; ) const;
/*!
ensures
- returns the C matrix from the quadratic program defined above.
!*/
const matrix<double,S,1>& get_Q ( const matrix<double,S,1>& get_Q (
) const; ) const;
/*!
ensures
- returns the diagonal of the Q matrix from the quadratic program defined
above.
!*/
const matrix<double,I,1>& get_R ( const matrix<double,I,1>& get_R (
) const; ) const;
/*!
ensures
- returns the diagonal of the R matrix from the quadratic program defined
above.
!*/
const matrix<double,I,1>& get_lower_constraints ( const matrix<double,I,1>& get_lower_constraints (
) const; ) const;
/*!
ensures
- returns the lower matrix from the quadratic program defined above. All
controls generated by this object will have values no less than this
lower bound. That is, any control u will satisfy min(u-lower) >= 0.
!*/
const matrix<double,I,1>& get_upper_constraints ( const matrix<double,I,1>& get_upper_constraints (
) const; ) const;
/*!
ensures
- returns the upper matrix from the quadratic program defined above. All
controls generated by this object will have values no larger than this
upper bound. That is, any control u will satisfy min(upper-u) >= 0.
!*/
const matrix<double,S,1>& get_target ( const matrix<double,S,1>& get_target (
const unsigned long time const unsigned long time
...@@ -112,6 +171,10 @@ namespace dlib ...@@ -112,6 +171,10 @@ namespace dlib
/*! /*!
requires requires
- time < horizon - time < horizon
ensures
- This object will try to find the control sequence that results in the
process obtaining get_target(time) state at the indicated time. Note
that the next time instant after "right now" is time 0.
!*/ !*/
void set_target ( void set_target (
...@@ -178,6 +241,23 @@ namespace dlib ...@@ -178,6 +241,23 @@ namespace dlib
matrix<double,I,1> operator() ( matrix<double,I,1> operator() (
const matrix<double,S,1>& current_state const matrix<double,S,1>& current_state
); );
/*!
requires
- min(R) > 0
- A.nr() == current_state.size()
ensures
- Solves the model predictive control problem defined by the arguments to
this objects constructor, assuming that the starting state is given by
current_state. Then we return the control that should be taken in the
current state that best optimizes the quadratic objective function
defined above.
- We also shift over the target states so that you only need to update the
last one (if you are using non-zero target states) via a call to
set_last_target()). In particular, for all valid t, it will be the case
that:
- #get_target(t) == get_target(t+1)
- #get_target(horizon-1) == get_target(horizon-1)
!*/
}; };
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment