Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
be8dc926
Commit
be8dc926
authored
Jan 06, 2019
by
Davis King
Browse files
Options
Browse Files
Download
Plain Diff
merged
parents
c763fafd
f685cb42
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
174 additions
and
21 deletions
+174
-21
layers.h
dlib/dnn/layers.h
+100
-0
layers_abstract.h
dlib/dnn/layers_abstract.h
+50
-0
jdhuff.cpp
dlib/external/libjpeg/jdhuff.cpp
+2
-2
dnn.cpp
dlib/test/dnn.cpp
+2
-2
dnn_semantic_segmentation_ex.cpp
examples/dnn_semantic_segmentation_ex.cpp
+4
-4
dnn_semantic_segmentation_ex.h
examples/dnn_semantic_segmentation_ex.h
+0
-0
dnn_semantic_segmentation_train_ex.cpp
examples/dnn_semantic_segmentation_train_ex.cpp
+16
-13
No files found.
dlib/dnn/layers.h
View file @
be8dc926
...
@@ -2386,6 +2386,106 @@ namespace dlib
...
@@ -2386,6 +2386,106 @@ namespace dlib
using
mult_prev9_
=
mult_prev_
<
tag9
>
;
using
mult_prev9_
=
mult_prev_
<
tag9
>
;
using
mult_prev10_
=
mult_prev_
<
tag10
>
;
using
mult_prev10_
=
mult_prev_
<
tag10
>
;
// ----------------------------------------------------------------------------------------
template
<
template
<
typename
>
class
tag
>
class
resize_prev_to_tagged_
{
public
:
const
static
unsigned
long
id
=
tag_id
<
tag
>::
id
;
resize_prev_to_tagged_
()
{
}
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
/*sub*/
)
{
}
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
)
{
auto
&
prev
=
sub
.
get_output
();
auto
&
tagged
=
layer
<
tag
>
(
sub
).
get_output
();
DLIB_CASSERT
(
prev
.
num_samples
()
==
tagged
.
num_samples
());
output
.
set_size
(
prev
.
num_samples
(),
prev
.
k
(),
tagged
.
nr
(),
tagged
.
nc
());
if
(
prev
.
nr
()
==
tagged
.
nr
()
&&
prev
.
nc
()
==
tagged
.
nc
())
{
tt
::
copy_tensor
(
false
,
output
,
0
,
prev
,
0
,
prev
.
k
());
}
else
{
tt
::
resize_bilinear
(
output
,
prev
);
}
}
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
/*params_grad*/
)
{
auto
&
prev
=
sub
.
get_gradient_input
();
DLIB_CASSERT
(
prev
.
k
()
==
gradient_input
.
k
());
DLIB_CASSERT
(
prev
.
num_samples
()
==
gradient_input
.
num_samples
());
if
(
prev
.
nr
()
==
gradient_input
.
nr
()
&&
prev
.
nc
()
==
gradient_input
.
nc
())
{
tt
::
copy_tensor
(
true
,
prev
,
0
,
gradient_input
,
0
,
prev
.
k
());
}
else
{
tt
::
resize_bilinear_gradient
(
prev
,
gradient_input
);
}
}
const
tensor
&
get_layer_params
()
const
{
return
params
;
}
tensor
&
get_layer_params
()
{
return
params
;
}
inline
dpoint
map_input_to_output
(
const
dpoint
&
p
)
const
{
return
p
;
}
inline
dpoint
map_output_to_input
(
const
dpoint
&
p
)
const
{
return
p
;
}
friend
void
serialize
(
const
resize_prev_to_tagged_
&
,
std
::
ostream
&
out
)
{
serialize
(
"resize_prev_to_tagged_"
,
out
);
}
friend
void
deserialize
(
resize_prev_to_tagged_
&
,
std
::
istream
&
in
)
{
std
::
string
version
;
deserialize
(
version
,
in
);
if
(
version
!=
"resize_prev_to_tagged_"
)
throw
serialization_error
(
"Unexpected version '"
+
version
+
"' found while deserializing dlib::resize_prev_to_tagged_."
);
}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
out
,
const
resize_prev_to_tagged_
&
item
)
{
out
<<
"resize_prev_to_tagged"
<<
id
;
return
out
;
}
friend
void
to_xml
(
const
resize_prev_to_tagged_
&
item
,
std
::
ostream
&
out
)
{
out
<<
"<resize_prev_to_tagged tag='"
<<
id
<<
"'/>
\n
"
;
}
private
:
resizable_tensor
params
;
};
template
<
template
<
typename
>
class
tag
,
typename
SUBNET
>
using
resize_prev_to_tagged
=
add_layer
<
resize_prev_to_tagged_
<
tag
>
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
template
<
...
...
dlib/dnn/layers_abstract.h
View file @
be8dc926
...
@@ -2382,6 +2382,56 @@ namespace dlib
...
@@ -2382,6 +2382,56 @@ namespace dlib
using
mult_prev9_
=
mult_prev_
<
tag9
>
;
using
mult_prev9_
=
mult_prev_
<
tag9
>
;
using
mult_prev10_
=
mult_prev_
<
tag10
>
;
using
mult_prev10_
=
mult_prev_
<
tag10
>
;
// ----------------------------------------------------------------------------------------
template
<
template
<
typename
>
class
tag
>
class
resize_prev_to_tagged_
{
/*!
WHAT THIS OBJECT REPRESENTS
This is an implementation of the EXAMPLE_COMPUTATIONAL_LAYER_ interface
defined above. This layer resizes the output channels of the previous layer
to have the same number of rows and columns as the output of the tagged layer.
This layer uses bilinear interpolation. If the sizes match already, then it
simply copies the data.
Therefore, you supply a tag via resize_prev_to_tagged's template argument that
tells it what layer to use for the target size.
If tensor PREV is resized to size of tensor TAGGED, then a tensor OUT is
produced such that:
- OUT.num_samples() == PREV.num_samples()
- OUT.k() == PREV.k()
- OUT.nr() == TAGGED.nr()
- OUT.nc() == TAGGED.nc()
!*/
public
:
resize_prev_to_tagged_
(
);
template
<
typename
SUBNET
>
void
setup
(
const
SUBNET
&
sub
);
template
<
typename
SUBNET
>
void
forward
(
const
SUBNET
&
sub
,
resizable_tensor
&
output
);
template
<
typename
SUBNET
>
void
backward
(
const
tensor
&
gradient_input
,
SUBNET
&
sub
,
tensor
&
params_grad
);
dpoint
map_input_to_output
(
dpoint
p
)
const
;
dpoint
map_output_to_input
(
dpoint
p
)
const
;
const
tensor
&
get_layer_params
()
const
;
tensor
&
get_layer_params
();
/*!
These functions are implemented as described in the EXAMPLE_COMPUTATIONAL_LAYER_ interface.
!*/
};
template
<
template
<
typename
>
class
tag
,
typename
SUBNET
>
using
resize_prev_to_tagged
=
add_layer
<
resize_prev_to_tagged_
<
tag
>
,
SUBNET
>
;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template
<
template
<
...
...
dlib/external/libjpeg/jdhuff.cpp
View file @
be8dc926
...
@@ -293,7 +293,7 @@ jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, int isDC, int tblno,
...
@@ -293,7 +293,7 @@ jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, int isDC, int tblno,
GLOBAL
(
int
)
GLOBAL
(
int
)
jpeg_fill_bit_buffer
(
bitread_working_state
*
state
,
jpeg_fill_bit_buffer
(
bitread_working_state
*
state
,
bit_buf_type
get_buffer
,
register
int
bits_left
,
bit_buf_type
get_buffer
,
int
bits_left
,
int
nbits
)
int
nbits
)
/* Load up the bit buffer to a depth of at least nbits */
/* Load up the bit buffer to a depth of at least nbits */
{
{
...
@@ -399,7 +399,7 @@ jpeg_fill_bit_buffer (bitread_working_state * state,
...
@@ -399,7 +399,7 @@ jpeg_fill_bit_buffer (bitread_working_state * state,
GLOBAL
(
int
)
GLOBAL
(
int
)
jpeg_huff_decode
(
bitread_working_state
*
state
,
jpeg_huff_decode
(
bitread_working_state
*
state
,
bit_buf_type
get_buffer
,
register
int
bits_left
,
bit_buf_type
get_buffer
,
int
bits_left
,
d_derived_tbl
*
htbl
,
int
min_bits
)
d_derived_tbl
*
htbl
,
int
min_bits
)
{
{
int
l
=
min_bits
;
int
l
=
min_bits
;
...
...
dlib/test/dnn.cpp
View file @
be8dc926
...
@@ -1910,7 +1910,7 @@ namespace
...
@@ -1910,7 +1910,7 @@ namespace
template
<
typename
SUBNET
>
template
<
typename
SUBNET
>
using
pres
=
prelu
<
add_prev1
<
bn_con
<
con
<
8
,
3
,
3
,
1
,
1
,
prelu
<
bn_con
<
con
<
8
,
3
,
3
,
1
,
1
,
tag1
<
SUBNET
>>>>>>>>
;
using
pres
=
prelu
<
add_prev1
<
bn_con
<
con
<
8
,
3
,
3
,
1
,
1
,
prelu
<
bn_con
<
con
<
8
,
3
,
3
,
1
,
1
,
tag1
<
SUBNET
>>>>>>>>
;
void
test_visit_funcions
()
void
test_visit_func
t
ions
()
{
{
using
net_type2
=
loss_multiclass_log
<
fc
<
10
,
using
net_type2
=
loss_multiclass_log
<
fc
<
10
,
avg_pool_everything
<
avg_pool_everything
<
...
@@ -3243,7 +3243,7 @@ namespace
...
@@ -3243,7 +3243,7 @@ namespace
test_batch_normalize_conv
();
test_batch_normalize_conv
();
test_basic_tensor_ops
();
test_basic_tensor_ops
();
test_layers
();
test_layers
();
test_visit_funcions
();
test_visit_func
t
ions
();
test_copy_tensor_cpu
();
test_copy_tensor_cpu
();
test_copy_tensor_add_to_cpu
();
test_copy_tensor_add_to_cpu
();
test_concat
();
test_concat
();
...
...
examples/dnn_semantic_segmentation_ex.cpp
View file @
be8dc926
...
@@ -16,7 +16,7 @@
...
@@ -16,7 +16,7 @@
./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images
./dnn_semantic_segmentation_ex /path/to/VOC2012-or-other-images
An alternative to steps 2-4 above is to download a pre-trained network
An alternative to steps 2-4 above is to download a pre-trained network
from here: http://dlib.net/files/semantic_segmentation_voc2012net.dnn
from here: http://dlib.net/files/semantic_segmentation_voc2012net
_v2
.dnn
It would be a good idea to become familiar with dlib's DNN tooling before reading this
It would be a good idea to become familiar with dlib's DNN tooling before reading this
example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
...
@@ -111,16 +111,16 @@ int main(int argc, char** argv) try
...
@@ -111,16 +111,16 @@ int main(int argc, char** argv) try
cout
<<
"You call this program like this: "
<<
endl
;
cout
<<
"You call this program like this: "
<<
endl
;
cout
<<
"./dnn_semantic_segmentation_train_ex /path/to/images"
<<
endl
;
cout
<<
"./dnn_semantic_segmentation_train_ex /path/to/images"
<<
endl
;
cout
<<
endl
;
cout
<<
endl
;
cout
<<
"You will also need a trained '
semantic_segmentation_voc2012net.dnn
' file."
<<
endl
;
cout
<<
"You will also need a trained '
"
<<
semantic_segmentation_net_filename
<<
"
' file."
<<
endl
;
cout
<<
"You can either train it yourself (see example program"
<<
endl
;
cout
<<
"You can either train it yourself (see example program"
<<
endl
;
cout
<<
"dnn_semantic_segmentation_train_ex), or download a"
<<
endl
;
cout
<<
"dnn_semantic_segmentation_train_ex), or download a"
<<
endl
;
cout
<<
"copy from here: http://dlib.net/files/
semantic_segmentation_voc2012net.dnn"
<<
endl
;
cout
<<
"copy from here: http://dlib.net/files/
"
<<
semantic_segmentation_net_filename
<<
endl
;
return
1
;
return
1
;
}
}
// Read the file containing the trained network from the working directory.
// Read the file containing the trained network from the working directory.
anet_type
net
;
anet_type
net
;
deserialize
(
"semantic_segmentation_voc2012net.dnn"
)
>>
net
;
deserialize
(
semantic_segmentation_net_filename
)
>>
net
;
// Show inference results in a window.
// Show inference results in a window.
image_window
win
;
image_window
win
;
...
...
examples/dnn_semantic_segmentation_ex.h
View file @
be8dc926
This diff is collapsed.
Click to expand it.
examples/dnn_semantic_segmentation_train_ex.cpp
View file @
be8dc926
...
@@ -41,7 +41,7 @@ struct training_sample
...
@@ -41,7 +41,7 @@ struct training_sample
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
rectangle
make_random_cropping_rect
_resnet
(
rectangle
make_random_cropping_rect
(
const
matrix
<
rgb_pixel
>&
img
,
const
matrix
<
rgb_pixel
>&
img
,
dlib
::
rand
&
rnd
dlib
::
rand
&
rnd
)
)
...
@@ -66,7 +66,7 @@ void randomly_crop_image (
...
@@ -66,7 +66,7 @@ void randomly_crop_image (
dlib
::
rand
&
rnd
dlib
::
rand
&
rnd
)
)
{
{
const
auto
rect
=
make_random_cropping_rect
_resnet
(
input_image
,
rnd
);
const
auto
rect
=
make_random_cropping_rect
(
input_image
,
rnd
);
const
chip_details
chip_details
(
rect
,
chip_dims
(
227
,
227
));
const
chip_details
chip_details
(
rect
,
chip_dims
(
227
,
227
));
...
@@ -259,12 +259,12 @@ double calculate_accuracy(anet_type& anet, const std::vector<image_info>& datase
...
@@ -259,12 +259,12 @@ double calculate_accuracy(anet_type& anet, const std::vector<image_info>& datase
int
main
(
int
argc
,
char
**
argv
)
try
int
main
(
int
argc
,
char
**
argv
)
try
{
{
if
(
argc
!=
2
)
if
(
argc
<
2
||
argc
>
3
)
{
{
cout
<<
"To run this program you need a copy of the PASCAL VOC2012 dataset."
<<
endl
;
cout
<<
"To run this program you need a copy of the PASCAL VOC2012 dataset."
<<
endl
;
cout
<<
endl
;
cout
<<
endl
;
cout
<<
"You call this program like this: "
<<
endl
;
cout
<<
"You call this program like this: "
<<
endl
;
cout
<<
"./dnn_semantic_segmentation_train_ex /path/to/VOC2012"
<<
endl
;
cout
<<
"./dnn_semantic_segmentation_train_ex /path/to/VOC2012
[minibatch-size]
"
<<
endl
;
return
1
;
return
1
;
}
}
...
@@ -277,14 +277,17 @@ int main(int argc, char** argv) try
...
@@ -277,14 +277,17 @@ int main(int argc, char** argv) try
cout
<<
"Didn't find the VOC2012 dataset. "
<<
endl
;
cout
<<
"Didn't find the VOC2012 dataset. "
<<
endl
;
return
1
;
return
1
;
}
}
// a mini-batch smaller than the default can be used with GPUs having less memory
const
int
minibatch_size
=
argc
==
3
?
std
::
stoi
(
argv
[
2
])
:
23
;
cout
<<
"mini-batch size: "
<<
minibatch_size
<<
endl
;
const
double
initial_learning_rate
=
0.1
;
const
double
initial_learning_rate
=
0.1
;
const
double
weight_decay
=
0.0001
;
const
double
weight_decay
=
0.0001
;
const
double
momentum
=
0.9
;
const
double
momentum
=
0.9
;
net_type
net
;
bnet_type
b
net
;
dnn_trainer
<
net_type
>
trainer
(
net
,
sgd
(
weight_decay
,
momentum
));
dnn_trainer
<
bnet_type
>
trainer
(
b
net
,
sgd
(
weight_decay
,
momentum
));
trainer
.
be_verbose
();
trainer
.
be_verbose
();
trainer
.
set_learning_rate
(
initial_learning_rate
);
trainer
.
set_learning_rate
(
initial_learning_rate
);
trainer
.
set_synchronization_file
(
"pascal_voc2012_trainer_state_file.dat"
,
std
::
chrono
::
minutes
(
10
));
trainer
.
set_synchronization_file
(
"pascal_voc2012_trainer_state_file.dat"
,
std
::
chrono
::
minutes
(
10
));
...
@@ -292,7 +295,7 @@ int main(int argc, char** argv) try
...
@@ -292,7 +295,7 @@ int main(int argc, char** argv) try
trainer
.
set_iterations_without_progress_threshold
(
5000
);
trainer
.
set_iterations_without_progress_threshold
(
5000
);
// Since the progress threshold is so large might as well set the batch normalization
// Since the progress threshold is so large might as well set the batch normalization
// stats window to something big too.
// stats window to something big too.
set_all_bn_running_stats_window_sizes
(
net
,
1000
);
set_all_bn_running_stats_window_sizes
(
b
net
,
1000
);
// Output training parameters.
// Output training parameters.
cout
<<
endl
<<
trainer
<<
endl
;
cout
<<
endl
<<
trainer
<<
endl
;
...
@@ -345,9 +348,9 @@ int main(int argc, char** argv) try
...
@@ -345,9 +348,9 @@ int main(int argc, char** argv) try
samples
.
clear
();
samples
.
clear
();
labels
.
clear
();
labels
.
clear
();
// make a
30-image
mini-batch
// make a mini-batch
training_sample
temp
;
training_sample
temp
;
while
(
samples
.
size
()
<
30
)
while
(
samples
.
size
()
<
minibatch_size
)
{
{
data
.
dequeue
(
temp
);
data
.
dequeue
(
temp
);
...
@@ -369,13 +372,13 @@ int main(int argc, char** argv) try
...
@@ -369,13 +372,13 @@ int main(int argc, char** argv) try
// also wait for threaded processing to stop in the trainer.
// also wait for threaded processing to stop in the trainer.
trainer
.
get_net
();
trainer
.
get_net
();
net
.
clean
();
b
net
.
clean
();
cout
<<
"saving network"
<<
endl
;
cout
<<
"saving network"
<<
endl
;
serialize
(
"semantic_segmentation_voc2012net.dnn"
)
<<
net
;
serialize
(
semantic_segmentation_net_filename
)
<<
b
net
;
// Make a copy of the network to use it for inference.
// Make a copy of the network to use it for inference.
anet_type
anet
=
net
;
anet_type
anet
=
b
net
;
cout
<<
"Testing the network..."
<<
endl
;
cout
<<
"Testing the network..."
<<
endl
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment