Commit c1433b3d authored by Davis King's avatar Davis King

Upgrade the layer interface so that you can implement layers that operate

in-place.
parent 69490292
This diff is collapsed.
...@@ -389,6 +389,7 @@ namespace dlib ...@@ -389,6 +389,7 @@ namespace dlib
ensures ensures
- Back propagates the error gradient, get_gradient_input(), through this - Back propagates the error gradient, get_gradient_input(), through this
network and uses the provided solvers to update the network parameters. network and uses the provided solvers to update the network parameters.
- All elements of #get_gradient_input() are set to 0.
!*/ !*/
void clean( void clean(
......
...@@ -36,7 +36,7 @@ namespace dlib ...@@ -36,7 +36,7 @@ namespace dlib
} }
template <typename SUBNET> template <typename SUBNET>
void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& params_grad) void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
{ {
// TODO // TODO
} }
...@@ -89,7 +89,7 @@ namespace dlib ...@@ -89,7 +89,7 @@ namespace dlib
} }
template <typename SUBNET> template <typename SUBNET>
void backward(const tensor& , const tensor& gradient_input, SUBNET& sub, tensor& params_grad) void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad)
{ {
// compute the gradient of the parameters. // compute the gradient of the parameters.
params_grad = trans(mat(sub.get_output()))*mat(gradient_input); params_grad = trans(mat(sub.get_output()))*mat(gradient_input);
...@@ -145,20 +145,22 @@ namespace dlib ...@@ -145,20 +145,22 @@ namespace dlib
{ {
} }
template <typename SUBNET> void forward_inplace(const tensor& input, tensor& output)
void forward(const SUBNET& sub, resizable_tensor& output)
{ {
output.copy_size(sub.get_output()); output = lowerbound(mat(input), 0);
output = lowerbound(mat(sub.get_output()), 0);
} }
template <typename SUBNET> void backward_inplace(
void backward(const tensor&, const tensor& gradient_input, SUBNET& sub, tensor& params_grad) const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor& params_grad
)
{ {
const float* grad = gradient_input.host(); const float* grad = gradient_input.host();
const float* in = sub.get_output().host(); const float* in = computed_output.host();
float* out = sub.get_gradient_input().host(); float* out = data_grad.host();
for (unsigned long i = 0; i < sub.get_output().size(); ++i) for (unsigned long i = 0; i < computed_output.size(); ++i)
{ {
if (in[i] > 0) if (in[i] > 0)
out[i] = grad[i]; out[i] = grad[i];
......
...@@ -91,12 +91,28 @@ namespace dlib ...@@ -91,12 +91,28 @@ namespace dlib
produces an output tensor. You create an entire deep network by composing produces an output tensor. You create an entire deep network by composing
these functions. Importantly, you are able to use a wide range of these functions. Importantly, you are able to use a wide range of
different functions to accommodate the task you are trying to accomplish. different functions to accommodate the task you are trying to accomplish.
Dlib includes a number of common layer types but if you want to define your Therefore, dlib includes a number of common layer types but if you want to
own then you simply implement a class with the same interface as define your own then you simply implement a class with the same interface
EXAMPLE_LAYER_. as EXAMPLE_LAYER_.
Note that there is no dlib::EXAMPLE_LAYER_ type. It is shown here purely Note that there is no dlib::EXAMPLE_LAYER_ type. It is shown here purely
to document the interface that a layer object must implement. to document the interface that a layer object must implement.
The central work of defining a layer is implementing the forward and backward
methods. When you do this you have three options:
- Implement the forward() and backward() methods according to the
specification shown below. Do not implement forward_inplace() and
backward_inplace().
- Implement the forward() and backward() methods according to the
specification shown below, except exclude the computed_output
parameter from backward(). Doing this will allow dlib to make some
layers execute in-place and therefore run a little faster and use
less memory. Do not implement forward_inplace() and
backward_inplace().
- Implement the forward_inplace() and backward_inplace() methods
according to the specification shown below. Do not implement
forward() and backward(). These in-place methods allow some types of
layers to be implemented more efficiently.
!*/ !*/
public: public:
...@@ -152,7 +168,7 @@ namespace dlib ...@@ -152,7 +168,7 @@ namespace dlib
template <typename SUBNET> template <typename SUBNET>
void forward( void forward(
const SUBNET& sub, const SUBNET& sub,
resizable_tensor& output resizable_tensor& data_output
); );
/*! /*!
requires requires
...@@ -160,14 +176,14 @@ namespace dlib ...@@ -160,14 +176,14 @@ namespace dlib
- setup() has been called. - setup() has been called.
ensures ensures
- Runs the output of the subnetwork through this layer and stores the - Runs the output of the subnetwork through this layer and stores the
output into #output. In particular, forward() can use any of the outputs results into #data_output. In particular, forward() can use any of the
in sub (e.g. sub.get_output(), sub.subnet().get_output(), etc.) to outputs in sub (e.g. sub.get_output(), sub.subnet().get_output(), etc.)
compute whatever it wants. to compute whatever it wants.
!*/ !*/
template <typename SUBNET> template <typename SUBNET>
void backward( void backward(
const tensor& computed_output, const tensor& computed_output, // this parameter is optional
const tensor& gradient_input, const tensor& gradient_input,
SUBNET& sub, SUBNET& sub,
tensor& params_grad tensor& params_grad
...@@ -189,7 +205,7 @@ namespace dlib ...@@ -189,7 +205,7 @@ namespace dlib
These gradients are stored into #sub and #params_grad, respectively. To be These gradients are stored into #sub and #params_grad, respectively. To be
precise, the gradients are taken of a function f(sub,get_layer_params()) precise, the gradients are taken of a function f(sub,get_layer_params())
which is defined thusly: which is defined thusly:
- Recalling that computed_output is a function of sub and get_layer_params() - Recalling that computed_output is a function of both sub and get_layer_params(),
since it is the result of calling forward(sub,computed_output): since it is the result of calling forward(sub,computed_output):
let f(sub,get_layer_params()) == dot(computed_output, gradient_input) let f(sub,get_layer_params()) == dot(computed_output, gradient_input)
Then we define the following gradient vectors: Then we define the following gradient vectors:
...@@ -207,6 +223,59 @@ namespace dlib ...@@ -207,6 +223,59 @@ namespace dlib
- layer<I>(sub).get_gradient_input() += DATA_GRADIENT_I - layer<I>(sub).get_gradient_input() += DATA_GRADIENT_I
!*/ !*/
void forward_inplace(
const tensor& data_input,
tensor& data_output
);
/*!
requires
- have_same_dimensions(data_input,data_output) == true
- setup() has been called.
ensures
- Runs the data_input tensor though this layer and stores the output into
#data_output.
- This function supports in-place operation, i.e. having
is_same_object(data_input, data_output)==true
!*/
void backward_inplace(
const tensor& computed_output,
const tensor& gradient_input,
tensor& data_grad,
tensor& params_grad
);
/*!
requires
- setup() has been called.
- computed_output is the tensor resulting from the most recent call to
forward_inplace(). This means that backward_inplace() is allowed to
cache intermediate results computed during forward_inplace() and use them
for the backward computation.
- have_same_dimensions(gradient_input, data_grad) == true
- have_same_dimensions(gradient_input, computed_output) == true
- have_same_dimensions(params_grad, get_layer_params()) == true
ensures
- This function supports in-place operation, i.e. having
is_same_object(gradient_input, data_grad)==true
- This function outputs the gradients of this layer with respect to the
input data from a sublayer and also with respect to this layer's parameters.
These gradients are stored into #data_grad and #params_grad, respectively. To be
precise, the gradients are taken of a function f(data_input,get_layer_params())
which is defined thusly:
- Recalling that computed_output is a function of both the input to
forward_inplace() and get_layer_params(), since it is the result of
calling forward_inplace(data_input,computed_output):
let f(data_input,get_layer_params()) == dot(computed_output, gradient_input)
Then we define the following gradient vectors:
- PARAMETER_GRADIENT == gradient of f(data_input,get_layer_params()) with
respect to get_layer_params().
- DATA_GRADIENT == gradient of f(data_input,get_layer_params()) with respect
to data_input.
Finally, backward_inplace() outputs these gradients by performing:
- params_grad = PARAMETER_GRADIENT
- data_grad = DATA_GRADIENT
!*/
const tensor& get_layer_params( const tensor& get_layer_params(
) const; ) const;
/*! /*!
...@@ -277,7 +346,7 @@ namespace dlib ...@@ -277,7 +346,7 @@ namespace dlib
template <typename SUBNET> void setup (const SUBNET& sub); template <typename SUBNET> void setup (const SUBNET& sub);
template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output); template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output);
template <typename SUBNET> void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& params_grad); template <typename SUBNET> void backward(const tensor& gradient_input, SUBNET& sub, tensor& params_grad);
const tensor& get_layer_params() const; const tensor& get_layer_params() const;
tensor& get_layer_params(); tensor& get_layer_params();
/*! /*!
...@@ -313,8 +382,8 @@ namespace dlib ...@@ -313,8 +382,8 @@ namespace dlib
); );
template <typename SUBNET> void setup (const SUBNET& sub); template <typename SUBNET> void setup (const SUBNET& sub);
template <typename SUBNET> void forward(const SUBNET& sub, resizable_tensor& output); void forward_inplace(const tensor& input, tensor& output);
template <typename SUBNET> void backward(const tensor& computed_output, const tensor& gradient_input, SUBNET& sub, tensor& params_grad); void backward_inplace(const tensor& computed_output, const tensor& gradient_input, tensor& data_grad, tensor& params_grad);
const tensor& get_layer_params() const; const tensor& get_layer_params() const;
tensor& get_layer_params(); tensor& get_layer_params();
/*! /*!
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment