Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
c28e4ec7
Commit
c28e4ec7
authored
Jan 27, 2013
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Clarified spec with regards to infinite weight edges.
parent
be223250
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
11 additions
and
1 deletion
+11
-1
chinese_whispers_abstract.h
dlib/clustering/chinese_whispers_abstract.h
+2
-1
modularity_clustering_abstract.h
dlib/clustering/modularity_clustering_abstract.h
+9
-0
No files found.
dlib/clustering/chinese_whispers_abstract.h
View file @
c28e4ec7
...
...
@@ -29,7 +29,8 @@ namespace dlib
- Interprets edges as a directed graph. That is, it contains the edges on the
said graph and the ordered_sample_pair::distance() values define the edge
weights (larger values indicating a stronger edge connection between the
nodes).
nodes). If an edge has a distance() value of infinity then it is considered
a "must link" edge.
- returns the number of clusters found.
- #labels.size() == max_index_plus_one(edges)
- for all valid i:
...
...
dlib/clustering/modularity_clustering_abstract.h
View file @
c28e4ec7
...
...
@@ -19,6 +19,8 @@ namespace dlib
/*!
requires
- labels.size() == max_index_plus_one(edges)
- for all valid i:
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity()
ensures
- Interprets edges as an undirected graph. That is, it contains the edges on
the said graph and the sample_pair::distance() values define the edge weights
...
...
@@ -42,6 +44,8 @@ namespace dlib
/*!
requires
- labels.size() == max_index_plus_one(edges)
- for all valid i:
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity()
ensures
- Interprets edges as a directed graph. That is, it contains the edges on the
said graph and the ordered_sample_pair::distance() values define the edge
...
...
@@ -72,6 +76,8 @@ namespace dlib
/*!
requires
- is_ordered_by_index(edges) == true
- for all valid i:
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity()
ensures
- This function performs the clustering algorithm described in the paper
Modularity and community structure in networks by M. E. J. Newman.
...
...
@@ -99,6 +105,9 @@ namespace dlib
const
unsigned
long
max_iterations
=
2000
);
/*!
requires
- for all valid i:
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity()
ensures
- This function is identical to the above newman_cluster() routine except that
it operates on a vector of sample_pair objects instead of
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment