Commit c5af788e authored by Davis King's avatar Davis King

merged

parents f06dbfd5 05f92e16
...@@ -21,16 +21,16 @@ namespace dlib ...@@ -21,16 +21,16 @@ namespace dlib
namespace impl_fhog namespace impl_fhog
{ {
template <typename image_type> template <typename image_type, typename T>
inline typename dlib::enable_if_c<pixel_traits<typename image_type::pixel_type>::rgb>::type get_gradient ( inline typename dlib::enable_if_c<pixel_traits<typename image_type::pixel_type>::rgb>::type get_gradient (
const int r, const int r,
const int c, const int c,
const image_type& img, const image_type& img,
matrix<double,2,1>& grad, matrix<T,2,1>& grad,
double& len T& len
) )
{ {
matrix<double,2,1> grad2, grad3; matrix<T, 2, 1> grad2, grad3;
// get the red gradient // get the red gradient
grad(0) = (int)img[r][c+1].red-(int)img[r][c-1].red; grad(0) = (int)img[r][c+1].red-(int)img[r][c-1].red;
grad(1) = (int)img[r+1][c].red-(int)img[r-1][c].red; grad(1) = (int)img[r+1][c].red-(int)img[r-1][c].red;
...@@ -39,12 +39,12 @@ namespace dlib ...@@ -39,12 +39,12 @@ namespace dlib
// get the green gradient // get the green gradient
grad2(0) = (int)img[r][c+1].green-(int)img[r][c-1].green; grad2(0) = (int)img[r][c+1].green-(int)img[r][c-1].green;
grad2(1) = (int)img[r+1][c].green-(int)img[r-1][c].green; grad2(1) = (int)img[r+1][c].green-(int)img[r-1][c].green;
double v2 = length_squared(grad2); T v2 = length_squared(grad2);
// get the blue gradient // get the blue gradient
grad3(0) = (int)img[r][c+1].blue-(int)img[r][c-1].blue; grad3(0) = (int)img[r][c+1].blue-(int)img[r][c-1].blue;
grad3(1) = (int)img[r+1][c].blue-(int)img[r-1][c].blue; grad3(1) = (int)img[r+1][c].blue-(int)img[r-1][c].blue;
double v3 = length_squared(grad3); T v3 = length_squared(grad3);
// pick color with strongest gradient // pick color with strongest gradient
if (v2 > len) if (v2 > len)
...@@ -144,13 +144,13 @@ namespace dlib ...@@ -144,13 +144,13 @@ namespace dlib
// ------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------
template <typename image_type> template <typename image_type, typename T>
inline typename dlib::disable_if_c<pixel_traits<typename image_type::pixel_type>::rgb>::type get_gradient ( inline typename dlib::disable_if_c<pixel_traits<typename image_type::pixel_type>::rgb>::type get_gradient (
const int r, const int r,
const int c, const int c,
const image_type& img, const image_type& img,
matrix<double,2,1>& grad, matrix<T, 2, 1>& grad,
double& len T& len
) )
{ {
grad(0) = (int)get_pixel_intensity(img[r][c+1])-(int)get_pixel_intensity(img[r][c-1]); grad(0) = (int)get_pixel_intensity(img[r][c+1])-(int)get_pixel_intensity(img[r][c-1]);
...@@ -200,7 +200,7 @@ namespace dlib ...@@ -200,7 +200,7 @@ namespace dlib
int o, int o,
int x, int x,
int y, int y,
const double& value const T& value
) )
{ {
hog[o][y][x] = value; hog[o][y][x] = value;
...@@ -255,7 +255,7 @@ namespace dlib ...@@ -255,7 +255,7 @@ namespace dlib
int o, int o,
int x, int x,
int y, int y,
const double& value const T& value
) )
{ {
hog[y][x](o) = value; hog[y][x](o) = value;
...@@ -336,7 +336,7 @@ namespace dlib ...@@ -336,7 +336,7 @@ namespace dlib
// unit vectors used to compute gradient orientation // unit vectors used to compute gradient orientation
matrix<double,2,1> directions[9]; matrix<float,2,1> directions[9];
directions[0] = 1.0000, 0.0000; directions[0] = 1.0000, 0.0000;
directions[1] = 0.9397, 0.3420; directions[1] = 0.9397, 0.3420;
directions[2] = 0.7660, 0.6428; directions[2] = 0.7660, 0.6428;
...@@ -417,16 +417,16 @@ namespace dlib ...@@ -417,16 +417,16 @@ namespace dlib
// Now process the right columns that don't fit into simd registers. // Now process the right columns that don't fit into simd registers.
for (; x < visible_nc; x++) for (; x < visible_nc; x++)
{ {
matrix<double,2,1> grad; matrix<float,2,1> grad;
double v; float v;
get_gradient(y,x,img,grad,v); get_gradient(y,x,img,grad,v);
// snap to one of 18 orientations // snap to one of 18 orientations
double best_dot = 0; float best_dot = 0;
int best_o = 0; int best_o = 0;
for (int o = 0; o < 9; o++) for (int o = 0; o < 9; o++)
{ {
const double dot = dlib::dot(directions[o], grad); const float dot = dlib::dot(directions[o], grad);
if (dot > best_dot) if (dot > best_dot)
{ {
best_dot = dot; best_dot = dot;
...@@ -444,7 +444,7 @@ namespace dlib ...@@ -444,7 +444,7 @@ namespace dlib
} }
} }
const double eps = 0.0001; const float eps = 0.0001;
// compute features // compute features
for (int y = 0; y < hog_nr; y++) for (int y = 0; y < hog_nr; y++)
{ {
...@@ -572,7 +572,7 @@ namespace dlib ...@@ -572,7 +572,7 @@ namespace dlib
} }
// unit vectors used to compute gradient orientation // unit vectors used to compute gradient orientation
matrix<double,2,1> directions[9]; matrix<float,2,1> directions[9];
directions[0] = 1.0000, 0.0000; directions[0] = 1.0000, 0.0000;
directions[1] = 0.9397, 0.3420; directions[1] = 0.9397, 0.3420;
directions[2] = 0.7660, 0.6428; directions[2] = 0.7660, 0.6428;
...@@ -586,8 +586,8 @@ namespace dlib ...@@ -586,8 +586,8 @@ namespace dlib
// First we allocate memory for caching orientation histograms & their norms. // First we allocate memory for caching orientation histograms & their norms.
const int cells_nr = (int)((double)img.nr()/(double)cell_size + 0.5); const int cells_nr = (int)((float)img.nr()/(float)cell_size + 0.5);
const int cells_nc = (int)((double)img.nc()/(double)cell_size + 0.5); const int cells_nc = (int)((float)img.nc()/(float)cell_size + 0.5);
if (cells_nr == 0 || cells_nc == 0) if (cells_nr == 0 || cells_nc == 0)
{ {
...@@ -629,10 +629,10 @@ namespace dlib ...@@ -629,10 +629,10 @@ namespace dlib
// First populate the gradient histograms // First populate the gradient histograms
for (int y = 1; y < visible_nr; y++) for (int y = 1; y < visible_nr; y++)
{ {
const double yp = ((double)y+0.5)/(double)cell_size - 0.5; const float yp = ((float)y+0.5)/(float)cell_size - 0.5;
const int iyp = (int)std::floor(yp); const int iyp = (int)std::floor(yp);
const double vy0 = yp-iyp; const float vy0 = yp - iyp;
const double vy1 = 1.0-vy0; const float vy1 = 1.0 - vy0;
int x; int x;
for (x = 1; x < visible_nc-3; x+=4) for (x = 1; x < visible_nc-3; x+=4)
{ {
...@@ -708,16 +708,16 @@ namespace dlib ...@@ -708,16 +708,16 @@ namespace dlib
// Now process the right columns that don't fit into simd registers. // Now process the right columns that don't fit into simd registers.
for (; x < visible_nc; x++) for (; x < visible_nc; x++)
{ {
matrix<double,2,1> grad; matrix<float, 2, 1> grad;
double v; float v;
get_gradient(y,x,img,grad,v); get_gradient(y,x,img,grad,v);
// snap to one of 18 orientations // snap to one of 18 orientations
double best_dot = 0; float best_dot = 0;
int best_o = 0; int best_o = 0;
for (int o = 0; o < 9; o++) for (int o = 0; o < 9; o++)
{ {
const double dot = dlib::dot(directions[o], grad); const float dot = dlib::dot(directions[o], grad);
if (dot > best_dot) if (dot > best_dot)
{ {
best_dot = dot; best_dot = dot;
...@@ -732,10 +732,10 @@ namespace dlib ...@@ -732,10 +732,10 @@ namespace dlib
v = std::sqrt(v); v = std::sqrt(v);
// add to 4 histograms around pixel using bilinear interpolation // add to 4 histograms around pixel using bilinear interpolation
const double xp = ((double)x+0.5)/(double)cell_size - 0.5; const float xp = ((double)x + 0.5) / (double)cell_size - 0.5;
const int ixp = (int)std::floor(xp); const int ixp = (int)std::floor(xp);
const double vx0 = xp-ixp; const float vx0 = xp - ixp;
const double vx1 = 1.0-vx0; const float vx1 = 1.0 - vx0;
hist[iyp+1][ixp+1](best_o) += vy1*vx1*v; hist[iyp+1][ixp+1](best_o) += vy1*vx1*v;
hist[iyp+1+1][ixp+1](best_o) += vy0*vx1*v; hist[iyp+1+1][ixp+1](best_o) += vy0*vx1*v;
...@@ -756,7 +756,7 @@ namespace dlib ...@@ -756,7 +756,7 @@ namespace dlib
} }
} }
const double eps = 0.0001; const float eps = 0.0001;
// compute features // compute features
for (int y = 0; y < hog_nr; y++) for (int y = 0; y < hog_nr; y++)
{ {
...@@ -930,14 +930,14 @@ namespace dlib ...@@ -930,14 +930,14 @@ namespace dlib
template < template <
typename image_type typename image_type
> >
matrix<double,0,1> extract_fhog_features( matrix<float,0,1> extract_fhog_features(
const image_type& img, const image_type& img,
int cell_size = 8, int cell_size = 8,
int filter_rows_padding = 1, int filter_rows_padding = 1,
int filter_cols_padding = 1 int filter_cols_padding = 1
) )
{ {
matrix<double,0,1> feats; matrix<float, 0, 1> feats;
extract_fhog_features(img, feats, cell_size, filter_rows_padding, filter_cols_padding); extract_fhog_features(img, feats, cell_size, filter_rows_padding, filter_cols_padding);
return feats; return feats;
} }
...@@ -1093,7 +1093,7 @@ namespace dlib ...@@ -1093,7 +1093,7 @@ namespace dlib
} }
} }
const double thresh = mean(himg) + 4*stddev(himg); const float thresh = mean(himg) + 4 * stddev(himg);
if (thresh != 0) if (thresh != 0)
return matrix_cast<unsigned char>(upperbound(round(himg*255/thresh),255)); return matrix_cast<unsigned char>(upperbound(round(himg*255/thresh),255));
else else
...@@ -1178,7 +1178,7 @@ namespace dlib ...@@ -1178,7 +1178,7 @@ namespace dlib
} }
} }
const double thresh = mean(himg) + 4*stddev(himg); const float thresh = mean(himg) + 4 * stddev(himg);
if (thresh != 0) if (thresh != 0)
return matrix_cast<unsigned char>(upperbound(round(himg*255/thresh),255)); return matrix_cast<unsigned char>(upperbound(round(himg*255/thresh),255));
else else
......
...@@ -22,7 +22,7 @@ ...@@ -22,7 +22,7 @@
#define DLIB_HAVE_AVX #define DLIB_HAVE_AVX
#endif #endif
#endif #endif
#if defined(_M_IX86_FP) && _M_IX86_FP >= 2 && !defined(DLIB_HAVE_SSE2) #if (defined( _M_X64) || defined(_M_IX86_FP) && _M_IX86_FP >= 2) && !defined(DLIB_HAVE_SSE2)
#define DLIB_HAVE_SSE2 #define DLIB_HAVE_SSE2
#endif #endif
#else #else
......
...@@ -39,6 +39,7 @@ set (tests ...@@ -39,6 +39,7 @@ set (tests
conditioning_class_c.cpp conditioning_class_c.cpp
conditioning_class.cpp conditioning_class.cpp
config_reader.cpp config_reader.cpp
corellation_tracker.cpp
crc32.cpp crc32.cpp
create_iris_datafile.cpp create_iris_datafile.cpp
data_io.cpp data_io.cpp
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment