Commit c632db76 authored by Davis King's avatar Davis King

merged

parents 10d265db baf193a5
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
#include "clustering/modularity_clustering.h" #include "clustering/modularity_clustering.h"
#include "clustering/chinese_whispers.h" #include "clustering/chinese_whispers.h"
#include "clustering/spectral_cluster.h"
#include "svm/kkmeans.h" #include "svm/kkmeans.h"
#endif // DLIB_CLuSTERING_ #endif // DLIB_CLuSTERING_
......
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SPECTRAL_CLUSTEr_H_
#define DLIB_SPECTRAL_CLUSTEr_H_
#include "spectral_cluster_abstract.h"
#include <vector>
#include "../matrix.h"
#include "../svm/kkmeans.h"
namespace dlib
{
template <
typename kernel_type,
typename vector_type
>
std::vector<unsigned long> spectral_cluster (
const kernel_type& k,
const vector_type& samples,
const unsigned long num_clusters
)
{
DLIB_CASSERT(num_clusters > 0,
"\t std::vector<unsigned long> spectral_cluster(k,samples,num_clusters)"
<< "\n\t num_clusters can't be 0."
);
if (num_clusters == 1)
{
// nothing to do, just assign everything to the 0 cluster.
return std::vector<unsigned long>(samples.size(), 0);
}
// compute the similarity matrix.
matrix<double> K(samples.size(), samples.size());
for (long r = 0; r < K.nr(); ++r)
for (long c = r+1; c < K.nc(); ++c)
K(r,c) = K(c,r) = (double)k(samples[r], samples[c]);
for (long r = 0; r < K.nr(); ++r)
K(r,r) = 0;
matrix<double,0,1> D(K.nr());
for (long r = 0; r < K.nr(); ++r)
D(r) = sum(rowm(K,r));
D = sqrt(reciprocal(D));
K = diagm(D)*K*diagm(D);
matrix<double> u,w,v;
// Use the normal SVD routine unless the matrix is really big, then use the fast
// approximate version.
if (K.nr() < 1000)
svd3(K,u,w,v);
else
svd_fast(K,u,w,v, num_clusters+100, 5);
// Pick out the eigenvectors associated with the largest eigenvalues.
rsort_columns(v,w);
v = colm(v, range(0,num_clusters-1));
// Now build the normalized spectral vectors, one for each input vector.
std::vector<matrix<double,0,1> > spec_samps, centers;
for (long r = 0; r < v.nr(); ++r)
{
spec_samps.push_back(trans(rowm(v,r)));
spec_samps.back() /= length(spec_samps.back());
}
// Finally do the K-means clustering
pick_initial_centers(num_clusters, centers, spec_samps);
find_clusters_using_kmeans(spec_samps, centers);
// And then compute the cluster assignments based on the output of K-means.
std::vector<unsigned long> assignments;
for (unsigned long i = 0; i < spec_samps.size(); ++i)
assignments.push_back(nearest_center(centers, spec_samps[i]));
return assignments;
}
}
#endif // DLIB_SPECTRAL_CLUSTEr_H_
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_SPECTRAL_CLUSTEr_ABSTRACT_H_
#ifdef DLIB_SPECTRAL_CLUSTEr_ABSTRACT_H_
#include <vector>
namespace dlib
{
template <
typename kernel_type,
typename vector_type
>
std::vector<unsigned long> spectral_cluster (
const kernel_type& k,
const vector_type& samples,
const unsigned long num_clusters
);
/*!
requires
- samples must be something with an interface compatible with std::vector.
- The following expression must evaluate to a double or float:
k(samples[i], samples[j])
- num_clusters > 0
ensures
- Performs the spectral clustering algorithm described in the paper:
On spectral clustering: Analysis and an algorithm by Ng, Jordan, and Weiss.
and returns the results.
- This function clusters the input data samples into num_clusters clusters and
returns a vector that indicates which cluster each sample falls into. In
particular, we return an array A such that:
- A.size() == samples.size()
- A[i] == the cluster assignment of samples[i].
- for all valid i: 0 <= A[i] < num_clusters
- The "similarity" of samples[i] with samples[j] is given by
k(samples[i],samples[j]). This means that k() should output a number >= 0
and the number should be larger for samples that are more similar.
!*/
}
#endif // DLIB_SPECTRAL_CLUSTEr_ABSTRACT_H_
...@@ -14,6 +14,80 @@ ...@@ -14,6 +14,80 @@
namespace dlib namespace dlib
{ {
// ----------------------------------------------------------------------------------------
template <typename T>
struct sub_image_proxy
{
sub_image_proxy (
T& img_,
const rectangle& rect_
) : img(img_), rect(rect_.intersect(get_rect(img_)))
{}
T& img;
const rectangle rect;
};
template <typename T>
struct image_traits<sub_image_proxy<T> >
{
typedef typename image_traits<T>::pixel_type pixel_type;
};
template <typename T>
struct image_traits<const sub_image_proxy<T> >
{
typedef typename image_traits<T>::pixel_type pixel_type;
};
template <typename T>
inline long num_rows( const sub_image_proxy<T>& img) { return img.rect.height(); }
template <typename T>
inline long num_columns( const sub_image_proxy<T>& img) { return img.rect.width(); }
template <typename T>
inline void* image_data( sub_image_proxy<T>& img)
{
typedef typename image_traits<T>::pixel_type pixel_type;
return (char*)image_data(img.img) + sizeof(pixel_type)*img.rect.left() + img.rect.top()*width_step(img);
}
template <typename T>
inline const void* image_data( const sub_image_proxy<T>& img)
{
typedef typename image_traits<T>::pixel_type pixel_type;
return (const char*)image_data(img.img) + sizeof(pixel_type)*img.rect.left() + img.rect.top()*width_step(img);
}
template <typename T>
inline long width_step(
const sub_image_proxy<T>& img
)
{
return width_step(img.img);
}
template <
typename image_type
>
sub_image_proxy<image_type> sub_image (
image_type& img,
const rectangle& rect
)
{
return sub_image_proxy<image_type>(img,rect);
}
template <
typename image_type
>
const sub_image_proxy<const image_type> sub_image (
const image_type& img,
const rectangle& rect
)
{
return sub_image_proxy<const image_type>(img,rect);
}
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
class interpolate_nearest_neighbor class interpolate_nearest_neighbor
...@@ -1426,6 +1500,7 @@ namespace dlib ...@@ -1426,6 +1500,7 @@ namespace dlib
struct chip_details struct chip_details
{ {
chip_details() : angle(0), rows(0), cols(0) {} chip_details() : angle(0), rows(0), cols(0) {}
chip_details(const rectangle& rect_) : rect(rect_),angle(0), rows(rect_.height()), cols(rect_.width()) {}
chip_details(const drectangle& rect_) : rect(rect_),angle(0), rows(rect_.height()), cols(rect_.width()) {} chip_details(const drectangle& rect_) : rect(rect_),angle(0), rows(rect_.height()), cols(rect_.width()) {}
chip_details(const drectangle& rect_, unsigned long size) : rect(rect_),angle(0) chip_details(const drectangle& rect_, unsigned long size) : rect(rect_),angle(0)
{ compute_dims_from_size(size); } { compute_dims_from_size(size); }
......
...@@ -934,6 +934,18 @@ namespace dlib ...@@ -934,6 +934,18 @@ namespace dlib
- #cols == rect_.width() - #cols == rect_.width()
!*/ !*/
chip_details(
const rectangle& rect_
);
/*!
ensures
- #rect == rect_
- #size() == rect_.area()
- #angle == 0
- #rows == rect_.height()
- #cols == rect_.width()
!*/
chip_details( chip_details(
const drectangle& rect_, const drectangle& rect_,
unsigned long size_ unsigned long size_
...@@ -1125,6 +1137,71 @@ namespace dlib ...@@ -1125,6 +1137,71 @@ namespace dlib
and stores the single output chip into #chip. and stores the single output chip into #chip.
!*/ !*/
// ----------------------------------------------------------------------------------------
template <
typename image_type
>
struct sub_image_proxy
{
/*!
REQUIREMENTS ON image_type
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
WHAT THIS OBJECT REPRESENTS
This is a lightweight image object for referencing a subwindow of an image.
It implements the generic image interface and can therefore be used with
any function that expects a generic image, excepting that you cannot change
the size of a sub_image_proxy.
Note that it only stores a pointer to the image given to its constructor
and therefore does not perform a copy. Moreover, this means that an
instance of this object becomes invalid after the image it references is
destroyed.
!*/
sub_image_proxy (
T& img,
const rectangle& rect
);
/*!
ensures
- This object is an image that represents the part of img contained within
rect. If rect is larger than img then rect is cropped so that it does
not go outside img.
!*/
};
template <
typename image_type
>
sub_image_proxy<image_type> sub_image (
image_type& img,
const rectangle& rect
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- returns sub_image_proxy<image_type>(img,rect)
!*/
template <
typename image_type
>
const sub_image_proxy<const image_type> sub_image (
const image_type& img,
const rectangle& rect
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- returns sub_image_proxy<const image_type>(img,rect)
!*/
// ---------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------
chip_details get_face_chip_details ( chip_details get_face_chip_details (
......
...@@ -214,6 +214,7 @@ ...@@ -214,6 +214,7 @@
<item>flip_image_dataset_left_right</item> <item>flip_image_dataset_left_right</item>
<item>rotate_image_dataset</item> <item>rotate_image_dataset</item>
<item>extract_image_chips</item> <item>extract_image_chips</item>
<item>sub_image</item>
</section> </section>
<section> <section>
...@@ -1629,6 +1630,19 @@ ...@@ -1629,6 +1630,19 @@
</description> </description>
</component> </component>
<!-- ************************************************************************* -->
<component>
<name>sub_image</name>
<file>dlib/image_transforms.h</file>
<spec_file link="true">dlib/image_transforms/interpolation_abstract.h</spec_file>
<description>
This function returns a lightweight sub-image of another image. In particular,
the returned sub-image simply holds a pointer to the original image, meaning there
is no overhead for using or creating the sub-image.
</description>
</component>
<!-- ************************************************************************* --> <!-- ************************************************************************* -->
<component> <component>
......
...@@ -113,6 +113,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09 ...@@ -113,6 +113,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>find_clusters_using_kmeans</item> <item>find_clusters_using_kmeans</item>
<item>nearest_center</item> <item>nearest_center</item>
<item>newman_cluster</item> <item>newman_cluster</item>
<item>spectral_cluster</item>
<item>chinese_whispers</item> <item>chinese_whispers</item>
<item>modularity</item> <item>modularity</item>
</section> </section>
...@@ -297,6 +298,22 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09 ...@@ -297,6 +298,22 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component> </component>
<!-- ************************************************************************* -->
<component>
<name>spectral_cluster</name>
<file>dlib/clustering.h</file>
<spec_file link="true">dlib/clustering/spectral_cluster_abstract.h</spec_file>
<description>
This function performs the clustering algorithm described in the paper
<blockquote>On spectral clustering: Analysis and an algorithm by Ng, Jordan, and Weiss.</blockquote>
</description>
<examples>
<example>kkmeans_ex.cpp.html</example>
</examples>
</component>
<!-- ************************************************************************* --> <!-- ************************************************************************* -->
<component> <component>
......
...@@ -413,6 +413,7 @@ ...@@ -413,6 +413,7 @@
<term file="ml.html" name="find_clusters_using_kmeans" include="dlib/clustering.h"/> <term file="ml.html" name="find_clusters_using_kmeans" include="dlib/clustering.h"/>
<term file="ml.html" name="nearest_center" include="dlib/clustering.h"/> <term file="ml.html" name="nearest_center" include="dlib/clustering.h"/>
<term file="ml.html" name="newman_cluster" include="dlib/clustering.h"/> <term file="ml.html" name="newman_cluster" include="dlib/clustering.h"/>
<term file="ml.html" name="spectral_cluster" include="dlib/clustering.h"/>
<term file="ml.html" name="chinese_whispers" include="dlib/clustering.h"/> <term file="ml.html" name="chinese_whispers" include="dlib/clustering.h"/>
<term file="ml.html" name="modularity" include="dlib/clustering.h"/> <term file="ml.html" name="modularity" include="dlib/clustering.h"/>
<term file="ml.html" name="pick_initial_centers" include="dlib/clustering.h"/> <term file="ml.html" name="pick_initial_centers" include="dlib/clustering.h"/>
...@@ -1264,6 +1265,8 @@ ...@@ -1264,6 +1265,8 @@
<term file="imaging.html" name="rotate_image" include="dlib/image_transforms.h"/> <term file="imaging.html" name="rotate_image" include="dlib/image_transforms.h"/>
<term file="imaging.html" name="resize_image" include="dlib/image_transforms.h"/> <term file="imaging.html" name="resize_image" include="dlib/image_transforms.h"/>
<term file="imaging.html" name="extract_image_chips" include="dlib/image_transforms.h"/> <term file="imaging.html" name="extract_image_chips" include="dlib/image_transforms.h"/>
<term file="imaging.html" name="sub_image" include="dlib/image_transforms.h"/>
<term file="dlib/image_transforms/interpolation_abstract.h.html" name="sub_image_proxy" include="dlib/image_transforms.h"/>
<term file="dlib/image_transforms/interpolation_abstract.h.html" name="extract_image_chip" include="dlib/image_transforms.h"/> <term file="dlib/image_transforms/interpolation_abstract.h.html" name="extract_image_chip" include="dlib/image_transforms.h"/>
<term file="dlib/image_transforms/interpolation_abstract.h.html" name="chip_details" include="dlib/image_transforms.h"/> <term file="dlib/image_transforms/interpolation_abstract.h.html" name="chip_details" include="dlib/image_transforms.h"/>
<term file="dlib/image_transforms/interpolation_abstract.h.html" name="get_face_chip_details" include="dlib/image_transforms.h"/> <term file="dlib/image_transforms/interpolation_abstract.h.html" name="get_face_chip_details" include="dlib/image_transforms.h"/>
......
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt // The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/* /*
This is an example illustrating the use of the kkmeans object This is an example illustrating the use of the kkmeans object
from the dlib C++ Library. and spectral_cluster() routine from the dlib C++ Library.
The kkmeans object is an implementation of a kernelized k-means clustering The kkmeans object is an implementation of a kernelized k-means clustering
algorithm. It is implemented by using the kcentroid object to represent algorithm. It is implemented by using the kcentroid object to represent
...@@ -11,7 +11,8 @@ ...@@ -11,7 +11,8 @@
a svm classifier finds non-linear decision surfaces. a svm classifier finds non-linear decision surfaces.
This example will make points from 3 classes and perform kernelized k-means This example will make points from 3 classes and perform kernelized k-means
clustering on those points. clustering on those points. It will also do the same thing using spectral
clustering.
The classes are as follows: The classes are as follows:
- points very close to the origin - points very close to the origin
...@@ -141,6 +142,13 @@ int main() ...@@ -141,6 +142,13 @@ int main()
cout << "num dictionary vectors for center 1: " << test.get_kcentroid(1).dictionary_size() << endl; cout << "num dictionary vectors for center 1: " << test.get_kcentroid(1).dictionary_size() << endl;
cout << "num dictionary vectors for center 2: " << test.get_kcentroid(2).dictionary_size() << endl; cout << "num dictionary vectors for center 2: " << test.get_kcentroid(2).dictionary_size() << endl;
// Finally, we can also solve the same kind of non-linear clustering problem with
// spectral_cluster(). The output is a vector that indicates which cluster each sample
// belongs to. Just like with kkmeans, it assigns each point to the correct cluster.
std::vector<unsigned long> assignments = spectral_cluster(kernel_type(0.1), samples, 3);
cout << mat(assignments) << endl;
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment