Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
c632db76
Commit
c632db76
authored
Feb 14, 2015
by
Davis King
Browse files
Options
Browse Files
Download
Plain Diff
merged
parents
10d265db
baf193a5
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
318 additions
and
2 deletions
+318
-2
clustering.h
dlib/clustering.h
+1
-0
spectral_cluster.h
dlib/clustering/spectral_cluster.h
+78
-0
spectral_cluster_abstract.h
dlib/clustering/spectral_cluster_abstract.h
+43
-0
interpolation.h
dlib/image_transforms/interpolation.h
+75
-0
interpolation_abstract.h
dlib/image_transforms/interpolation_abstract.h
+77
-0
imaging.xml
docs/docs/imaging.xml
+14
-0
ml.xml
docs/docs/ml.xml
+17
-0
term_index.xml
docs/docs/term_index.xml
+3
-0
kkmeans_ex.cpp
examples/kkmeans_ex.cpp
+10
-2
No files found.
dlib/clustering.h
View file @
c632db76
...
@@ -5,6 +5,7 @@
...
@@ -5,6 +5,7 @@
#include "clustering/modularity_clustering.h"
#include "clustering/modularity_clustering.h"
#include "clustering/chinese_whispers.h"
#include "clustering/chinese_whispers.h"
#include "clustering/spectral_cluster.h"
#include "svm/kkmeans.h"
#include "svm/kkmeans.h"
#endif // DLIB_CLuSTERING_
#endif // DLIB_CLuSTERING_
...
...
dlib/clustering/spectral_cluster.h
0 → 100644
View file @
c632db76
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SPECTRAL_CLUSTEr_H_
#define DLIB_SPECTRAL_CLUSTEr_H_
#include "spectral_cluster_abstract.h"
#include <vector>
#include "../matrix.h"
#include "../svm/kkmeans.h"
namespace
dlib
{
template
<
typename
kernel_type
,
typename
vector_type
>
std
::
vector
<
unsigned
long
>
spectral_cluster
(
const
kernel_type
&
k
,
const
vector_type
&
samples
,
const
unsigned
long
num_clusters
)
{
DLIB_CASSERT
(
num_clusters
>
0
,
"
\t
std::vector<unsigned long> spectral_cluster(k,samples,num_clusters)"
<<
"
\n\t
num_clusters can't be 0."
);
if
(
num_clusters
==
1
)
{
// nothing to do, just assign everything to the 0 cluster.
return
std
::
vector
<
unsigned
long
>
(
samples
.
size
(),
0
);
}
// compute the similarity matrix.
matrix
<
double
>
K
(
samples
.
size
(),
samples
.
size
());
for
(
long
r
=
0
;
r
<
K
.
nr
();
++
r
)
for
(
long
c
=
r
+
1
;
c
<
K
.
nc
();
++
c
)
K
(
r
,
c
)
=
K
(
c
,
r
)
=
(
double
)
k
(
samples
[
r
],
samples
[
c
]);
for
(
long
r
=
0
;
r
<
K
.
nr
();
++
r
)
K
(
r
,
r
)
=
0
;
matrix
<
double
,
0
,
1
>
D
(
K
.
nr
());
for
(
long
r
=
0
;
r
<
K
.
nr
();
++
r
)
D
(
r
)
=
sum
(
rowm
(
K
,
r
));
D
=
sqrt
(
reciprocal
(
D
));
K
=
diagm
(
D
)
*
K
*
diagm
(
D
);
matrix
<
double
>
u
,
w
,
v
;
// Use the normal SVD routine unless the matrix is really big, then use the fast
// approximate version.
if
(
K
.
nr
()
<
1000
)
svd3
(
K
,
u
,
w
,
v
);
else
svd_fast
(
K
,
u
,
w
,
v
,
num_clusters
+
100
,
5
);
// Pick out the eigenvectors associated with the largest eigenvalues.
rsort_columns
(
v
,
w
);
v
=
colm
(
v
,
range
(
0
,
num_clusters
-
1
));
// Now build the normalized spectral vectors, one for each input vector.
std
::
vector
<
matrix
<
double
,
0
,
1
>
>
spec_samps
,
centers
;
for
(
long
r
=
0
;
r
<
v
.
nr
();
++
r
)
{
spec_samps
.
push_back
(
trans
(
rowm
(
v
,
r
)));
spec_samps
.
back
()
/=
length
(
spec_samps
.
back
());
}
// Finally do the K-means clustering
pick_initial_centers
(
num_clusters
,
centers
,
spec_samps
);
find_clusters_using_kmeans
(
spec_samps
,
centers
);
// And then compute the cluster assignments based on the output of K-means.
std
::
vector
<
unsigned
long
>
assignments
;
for
(
unsigned
long
i
=
0
;
i
<
spec_samps
.
size
();
++
i
)
assignments
.
push_back
(
nearest_center
(
centers
,
spec_samps
[
i
]));
return
assignments
;
}
}
#endif // DLIB_SPECTRAL_CLUSTEr_H_
dlib/clustering/spectral_cluster_abstract.h
0 → 100644
View file @
c632db76
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_SPECTRAL_CLUSTEr_ABSTRACT_H_
#ifdef DLIB_SPECTRAL_CLUSTEr_ABSTRACT_H_
#include <vector>
namespace
dlib
{
template
<
typename
kernel_type
,
typename
vector_type
>
std
::
vector
<
unsigned
long
>
spectral_cluster
(
const
kernel_type
&
k
,
const
vector_type
&
samples
,
const
unsigned
long
num_clusters
);
/*!
requires
- samples must be something with an interface compatible with std::vector.
- The following expression must evaluate to a double or float:
k(samples[i], samples[j])
- num_clusters > 0
ensures
- Performs the spectral clustering algorithm described in the paper:
On spectral clustering: Analysis and an algorithm by Ng, Jordan, and Weiss.
and returns the results.
- This function clusters the input data samples into num_clusters clusters and
returns a vector that indicates which cluster each sample falls into. In
particular, we return an array A such that:
- A.size() == samples.size()
- A[i] == the cluster assignment of samples[i].
- for all valid i: 0 <= A[i] < num_clusters
- The "similarity" of samples[i] with samples[j] is given by
k(samples[i],samples[j]). This means that k() should output a number >= 0
and the number should be larger for samples that are more similar.
!*/
}
#endif // DLIB_SPECTRAL_CLUSTEr_ABSTRACT_H_
dlib/image_transforms/interpolation.h
View file @
c632db76
...
@@ -14,6 +14,80 @@
...
@@ -14,6 +14,80 @@
namespace
dlib
namespace
dlib
{
{
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
struct
sub_image_proxy
{
sub_image_proxy
(
T
&
img_
,
const
rectangle
&
rect_
)
:
img
(
img_
),
rect
(
rect_
.
intersect
(
get_rect
(
img_
)))
{}
T
&
img
;
const
rectangle
rect
;
};
template
<
typename
T
>
struct
image_traits
<
sub_image_proxy
<
T
>
>
{
typedef
typename
image_traits
<
T
>::
pixel_type
pixel_type
;
};
template
<
typename
T
>
struct
image_traits
<
const
sub_image_proxy
<
T
>
>
{
typedef
typename
image_traits
<
T
>::
pixel_type
pixel_type
;
};
template
<
typename
T
>
inline
long
num_rows
(
const
sub_image_proxy
<
T
>&
img
)
{
return
img
.
rect
.
height
();
}
template
<
typename
T
>
inline
long
num_columns
(
const
sub_image_proxy
<
T
>&
img
)
{
return
img
.
rect
.
width
();
}
template
<
typename
T
>
inline
void
*
image_data
(
sub_image_proxy
<
T
>&
img
)
{
typedef
typename
image_traits
<
T
>::
pixel_type
pixel_type
;
return
(
char
*
)
image_data
(
img
.
img
)
+
sizeof
(
pixel_type
)
*
img
.
rect
.
left
()
+
img
.
rect
.
top
()
*
width_step
(
img
);
}
template
<
typename
T
>
inline
const
void
*
image_data
(
const
sub_image_proxy
<
T
>&
img
)
{
typedef
typename
image_traits
<
T
>::
pixel_type
pixel_type
;
return
(
const
char
*
)
image_data
(
img
.
img
)
+
sizeof
(
pixel_type
)
*
img
.
rect
.
left
()
+
img
.
rect
.
top
()
*
width_step
(
img
);
}
template
<
typename
T
>
inline
long
width_step
(
const
sub_image_proxy
<
T
>&
img
)
{
return
width_step
(
img
.
img
);
}
template
<
typename
image_type
>
sub_image_proxy
<
image_type
>
sub_image
(
image_type
&
img
,
const
rectangle
&
rect
)
{
return
sub_image_proxy
<
image_type
>
(
img
,
rect
);
}
template
<
typename
image_type
>
const
sub_image_proxy
<
const
image_type
>
sub_image
(
const
image_type
&
img
,
const
rectangle
&
rect
)
{
return
sub_image_proxy
<
const
image_type
>
(
img
,
rect
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class
interpolate_nearest_neighbor
class
interpolate_nearest_neighbor
...
@@ -1426,6 +1500,7 @@ namespace dlib
...
@@ -1426,6 +1500,7 @@ namespace dlib
struct
chip_details
struct
chip_details
{
{
chip_details
()
:
angle
(
0
),
rows
(
0
),
cols
(
0
)
{}
chip_details
()
:
angle
(
0
),
rows
(
0
),
cols
(
0
)
{}
chip_details
(
const
rectangle
&
rect_
)
:
rect
(
rect_
),
angle
(
0
),
rows
(
rect_
.
height
()),
cols
(
rect_
.
width
())
{}
chip_details
(
const
drectangle
&
rect_
)
:
rect
(
rect_
),
angle
(
0
),
rows
(
rect_
.
height
()),
cols
(
rect_
.
width
())
{}
chip_details
(
const
drectangle
&
rect_
)
:
rect
(
rect_
),
angle
(
0
),
rows
(
rect_
.
height
()),
cols
(
rect_
.
width
())
{}
chip_details
(
const
drectangle
&
rect_
,
unsigned
long
size
)
:
rect
(
rect_
),
angle
(
0
)
chip_details
(
const
drectangle
&
rect_
,
unsigned
long
size
)
:
rect
(
rect_
),
angle
(
0
)
{
compute_dims_from_size
(
size
);
}
{
compute_dims_from_size
(
size
);
}
...
...
dlib/image_transforms/interpolation_abstract.h
View file @
c632db76
...
@@ -934,6 +934,18 @@ namespace dlib
...
@@ -934,6 +934,18 @@ namespace dlib
- #cols == rect_.width()
- #cols == rect_.width()
!*/
!*/
chip_details
(
const
rectangle
&
rect_
);
/*!
ensures
- #rect == rect_
- #size() == rect_.area()
- #angle == 0
- #rows == rect_.height()
- #cols == rect_.width()
!*/
chip_details
(
chip_details
(
const
drectangle
&
rect_
,
const
drectangle
&
rect_
,
unsigned
long
size_
unsigned
long
size_
...
@@ -1125,6 +1137,71 @@ namespace dlib
...
@@ -1125,6 +1137,71 @@ namespace dlib
and stores the single output chip into #chip.
and stores the single output chip into #chip.
!*/
!*/
// ----------------------------------------------------------------------------------------
template
<
typename
image_type
>
struct
sub_image_proxy
{
/*!
REQUIREMENTS ON image_type
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
WHAT THIS OBJECT REPRESENTS
This is a lightweight image object for referencing a subwindow of an image.
It implements the generic image interface and can therefore be used with
any function that expects a generic image, excepting that you cannot change
the size of a sub_image_proxy.
Note that it only stores a pointer to the image given to its constructor
and therefore does not perform a copy. Moreover, this means that an
instance of this object becomes invalid after the image it references is
destroyed.
!*/
sub_image_proxy
(
T
&
img
,
const
rectangle
&
rect
);
/*!
ensures
- This object is an image that represents the part of img contained within
rect. If rect is larger than img then rect is cropped so that it does
not go outside img.
!*/
};
template
<
typename
image_type
>
sub_image_proxy
<
image_type
>
sub_image
(
image_type
&
img
,
const
rectangle
&
rect
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- returns sub_image_proxy<image_type>(img,rect)
!*/
template
<
typename
image_type
>
const
sub_image_proxy
<
const
image_type
>
sub_image
(
const
image_type
&
img
,
const
rectangle
&
rect
);
/*!
requires
- image_type == an image object that implements the interface defined in
dlib/image_processing/generic_image.h
ensures
- returns sub_image_proxy<const image_type>(img,rect)
!*/
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
chip_details
get_face_chip_details
(
chip_details
get_face_chip_details
(
...
...
docs/docs/imaging.xml
View file @
c632db76
...
@@ -214,6 +214,7 @@
...
@@ -214,6 +214,7 @@
<item>
flip_image_dataset_left_right
</item>
<item>
flip_image_dataset_left_right
</item>
<item>
rotate_image_dataset
</item>
<item>
rotate_image_dataset
</item>
<item>
extract_image_chips
</item>
<item>
extract_image_chips
</item>
<item>
sub_image
</item>
</section>
</section>
<section>
<section>
...
@@ -1629,6 +1630,19 @@
...
@@ -1629,6 +1630,19 @@
</description>
</description>
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
sub_image
</name>
<file>
dlib/image_transforms.h
</file>
<spec_file
link=
"true"
>
dlib/image_transforms/interpolation_abstract.h
</spec_file>
<description>
This function returns a lightweight sub-image of another image. In particular,
the returned sub-image simply holds a pointer to the original image, meaning there
is no overhead for using or creating the sub-image.
</description>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
...
docs/docs/ml.xml
View file @
c632db76
...
@@ -113,6 +113,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -113,6 +113,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>
find_clusters_using_kmeans
</item>
<item>
find_clusters_using_kmeans
</item>
<item>
nearest_center
</item>
<item>
nearest_center
</item>
<item>
newman_cluster
</item>
<item>
newman_cluster
</item>
<item>
spectral_cluster
</item>
<item>
chinese_whispers
</item>
<item>
chinese_whispers
</item>
<item>
modularity
</item>
<item>
modularity
</item>
</section>
</section>
...
@@ -297,6 +298,22 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
...
@@ -297,6 +298,22 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component>
</component>
<!-- ************************************************************************* -->
<component>
<name>
spectral_cluster
</name>
<file>
dlib/clustering.h
</file>
<spec_file
link=
"true"
>
dlib/clustering/spectral_cluster_abstract.h
</spec_file>
<description>
This function performs the clustering algorithm described in the paper
<blockquote>
On spectral clustering: Analysis and an algorithm by Ng, Jordan, and Weiss.
</blockquote>
</description>
<examples>
<example>
kkmeans_ex.cpp.html
</example>
</examples>
</component>
<!-- ************************************************************************* -->
<!-- ************************************************************************* -->
<component>
<component>
...
...
docs/docs/term_index.xml
View file @
c632db76
...
@@ -413,6 +413,7 @@
...
@@ -413,6 +413,7 @@
<term
file=
"ml.html"
name=
"find_clusters_using_kmeans"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"find_clusters_using_kmeans"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"nearest_center"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"nearest_center"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"newman_cluster"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"newman_cluster"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"spectral_cluster"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"chinese_whispers"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"chinese_whispers"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"modularity"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"modularity"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"pick_initial_centers"
include=
"dlib/clustering.h"
/>
<term
file=
"ml.html"
name=
"pick_initial_centers"
include=
"dlib/clustering.h"
/>
...
@@ -1264,6 +1265,8 @@
...
@@ -1264,6 +1265,8 @@
<term
file=
"imaging.html"
name=
"rotate_image"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"rotate_image"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"resize_image"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"resize_image"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"extract_image_chips"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"extract_image_chips"
include=
"dlib/image_transforms.h"
/>
<term
file=
"imaging.html"
name=
"sub_image"
include=
"dlib/image_transforms.h"
/>
<term
file=
"dlib/image_transforms/interpolation_abstract.h.html"
name=
"sub_image_proxy"
include=
"dlib/image_transforms.h"
/>
<term
file=
"dlib/image_transforms/interpolation_abstract.h.html"
name=
"extract_image_chip"
include=
"dlib/image_transforms.h"
/>
<term
file=
"dlib/image_transforms/interpolation_abstract.h.html"
name=
"extract_image_chip"
include=
"dlib/image_transforms.h"
/>
<term
file=
"dlib/image_transforms/interpolation_abstract.h.html"
name=
"chip_details"
include=
"dlib/image_transforms.h"
/>
<term
file=
"dlib/image_transforms/interpolation_abstract.h.html"
name=
"chip_details"
include=
"dlib/image_transforms.h"
/>
<term
file=
"dlib/image_transforms/interpolation_abstract.h.html"
name=
"get_face_chip_details"
include=
"dlib/image_transforms.h"
/>
<term
file=
"dlib/image_transforms/interpolation_abstract.h.html"
name=
"get_face_chip_details"
include=
"dlib/image_transforms.h"
/>
...
...
examples/kkmeans_ex.cpp
View file @
c632db76
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
/*
This is an example illustrating the use of the kkmeans object
This is an example illustrating the use of the kkmeans object
from the dlib C++ Library.
and spectral_cluster() routine
from the dlib C++ Library.
The kkmeans object is an implementation of a kernelized k-means clustering
The kkmeans object is an implementation of a kernelized k-means clustering
algorithm. It is implemented by using the kcentroid object to represent
algorithm. It is implemented by using the kcentroid object to represent
...
@@ -11,7 +11,8 @@
...
@@ -11,7 +11,8 @@
a svm classifier finds non-linear decision surfaces.
a svm classifier finds non-linear decision surfaces.
This example will make points from 3 classes and perform kernelized k-means
This example will make points from 3 classes and perform kernelized k-means
clustering on those points.
clustering on those points. It will also do the same thing using spectral
clustering.
The classes are as follows:
The classes are as follows:
- points very close to the origin
- points very close to the origin
...
@@ -141,6 +142,13 @@ int main()
...
@@ -141,6 +142,13 @@ int main()
cout
<<
"num dictionary vectors for center 1: "
<<
test
.
get_kcentroid
(
1
).
dictionary_size
()
<<
endl
;
cout
<<
"num dictionary vectors for center 1: "
<<
test
.
get_kcentroid
(
1
).
dictionary_size
()
<<
endl
;
cout
<<
"num dictionary vectors for center 2: "
<<
test
.
get_kcentroid
(
2
).
dictionary_size
()
<<
endl
;
cout
<<
"num dictionary vectors for center 2: "
<<
test
.
get_kcentroid
(
2
).
dictionary_size
()
<<
endl
;
// Finally, we can also solve the same kind of non-linear clustering problem with
// spectral_cluster(). The output is a vector that indicates which cluster each sample
// belongs to. Just like with kkmeans, it assigns each point to the correct cluster.
std
::
vector
<
unsigned
long
>
assignments
=
spectral_cluster
(
kernel_type
(
0.1
),
samples
,
3
);
cout
<<
mat
(
assignments
)
<<
endl
;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment