Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
cc708d04
Commit
cc708d04
authored
Nov 23, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added unit tests for the new svm_rank_trainer.
parent
a5d29187
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
255 additions
and
0 deletions
+255
-0
CMakeLists.txt
dlib/test/CMakeLists.txt
+1
-0
makefile
dlib/test/makefile
+1
-0
ranking.cpp
dlib/test/ranking.cpp
+253
-0
No files found.
dlib/test/CMakeLists.txt
View file @
cc708d04
...
@@ -92,6 +92,7 @@ set (tests
...
@@ -92,6 +92,7 @@ set (tests
pyramid_down.cpp
pyramid_down.cpp
queue.cpp
queue.cpp
rand.cpp
rand.cpp
ranking.cpp
read_write_mutex.cpp
read_write_mutex.cpp
reference_counter.cpp
reference_counter.cpp
rls.cpp
rls.cpp
...
...
dlib/test/makefile
View file @
cc708d04
...
@@ -107,6 +107,7 @@ SRC += probabilistic.cpp
...
@@ -107,6 +107,7 @@ SRC += probabilistic.cpp
SRC
+=
pyramid_down.cpp
SRC
+=
pyramid_down.cpp
SRC
+=
queue.cpp
SRC
+=
queue.cpp
SRC
+=
rand.cpp
SRC
+=
rand.cpp
SRC
+=
ranking.cpp
SRC
+=
read_write_mutex.cpp
SRC
+=
read_write_mutex.cpp
SRC
+=
reference_counter.cpp
SRC
+=
reference_counter.cpp
SRC
+=
rls.cpp
SRC
+=
rls.cpp
...
...
dlib/test/ranking.cpp
0 → 100644
View file @
cc708d04
// Copyright (C) 2012 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#include <dlib/svm.h>
#include <dlib/rand.h>
#include <sstream>
#include <string>
#include <cstdlib>
#include <ctime>
#include "tester.h"
namespace
{
using
namespace
test
;
using
namespace
dlib
;
using
namespace
std
;
logger
dlog
(
"test.ranking"
);
// ----------------------------------------------------------------------------------------
template
<
typename
T
>
void
brute_force_count_ranking_inversions
(
const
std
::
vector
<
T
>&
x
,
const
std
::
vector
<
T
>&
y
,
std
::
vector
<
unsigned
long
>&
x_count
,
std
::
vector
<
unsigned
long
>&
y_count
)
{
x_count
.
assign
(
x
.
size
(),
0
);
y_count
.
assign
(
y
.
size
(),
0
);
for
(
unsigned
long
i
=
0
;
i
<
x
.
size
();
++
i
)
{
for
(
unsigned
long
j
=
0
;
j
<
y
.
size
();
++
j
)
{
if
(
x
[
i
]
<=
y
[
j
])
{
x_count
[
i
]
++
;
y_count
[
j
]
++
;
}
}
}
}
// ----------------------------------------------------------------------------------------
void
test_count_ranking_inversions
()
{
print_spinner
();
dlog
<<
LINFO
<<
"in test_count_ranking_inversions()"
;
dlib
::
rand
rnd
;
std
::
vector
<
int
>
x
,
y
;
std
::
vector
<
unsigned
long
>
x_count
,
y_count
;
std
::
vector
<
unsigned
long
>
x_count2
,
y_count2
;
for
(
int
iter
=
0
;
iter
<
5000
;
++
iter
)
{
x
.
resize
(
rnd
.
get_random_32bit_number
()
%
10
);
y
.
resize
(
rnd
.
get_random_32bit_number
()
%
10
);
for
(
unsigned
long
i
=
0
;
i
<
x
.
size
();
++
i
)
x
[
i
]
=
((
int
)
rnd
.
get_random_32bit_number
()
%
10
)
-
5
;
for
(
unsigned
long
i
=
0
;
i
<
y
.
size
();
++
i
)
y
[
i
]
=
((
int
)
rnd
.
get_random_32bit_number
()
%
10
)
-
5
;
count_ranking_inversions
(
x
,
y
,
x_count
,
y_count
);
brute_force_count_ranking_inversions
(
x
,
y
,
x_count2
,
y_count2
);
DLIB_TEST
(
vector_to_matrix
(
x_count
)
==
vector_to_matrix
(
x_count2
));
DLIB_TEST
(
vector_to_matrix
(
y_count
)
==
vector_to_matrix
(
y_count2
));
}
}
// ----------------------------------------------------------------------------------------
void
dotest1
()
{
print_spinner
();
dlog
<<
LINFO
<<
"in dotest1()"
;
typedef
matrix
<
double
,
4
,
1
>
sample_type
;
typedef
linear_kernel
<
sample_type
>
kernel_type
;
svm_rank_trainer
<
kernel_type
>
trainer
;
std
::
vector
<
ranking_pair
<
sample_type
>
>
samples
;
ranking_pair
<
sample_type
>
p
;
sample_type
samp
;
samp
=
0
,
0
,
0
,
1
;
p
.
relevant
.
push_back
(
samp
);
samp
=
1
,
0
,
0
,
0
;
p
.
nonrelevant
.
push_back
(
samp
);
samples
.
push_back
(
p
);
samp
=
0
,
0
,
1
,
0
;
p
.
relevant
.
push_back
(
samp
);
samp
=
1
,
0
,
0
,
0
;
p
.
nonrelevant
.
push_back
(
samp
);
samp
=
0
,
1
,
0
,
0
;
p
.
nonrelevant
.
push_back
(
samp
);
samp
=
0
,
1
,
0
,
0
;
p
.
nonrelevant
.
push_back
(
samp
);
samples
.
push_back
(
p
);
trainer
.
set_c
(
10
);
decision_function
<
kernel_type
>
df
=
trainer
.
train
(
samples
);
dlog
<<
LINFO
<<
"accuracy: "
<<
test_ranking_function
(
df
,
samples
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
df
,
samples
)
-
1.0
)
<
1e-14
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
trainer
.
train
(
samples
[
1
]),
samples
)
-
1.0
)
<
1e-14
);
trainer
.
set_epsilon
(
1e-13
);
df
=
trainer
.
train
(
samples
);
dlog
<<
LINFO
<<
df
.
basis_vectors
(
0
);
sample_type
truew
;
truew
=
-
0.5
,
-
0.5
,
0.5
,
0.5
;
DLIB_TEST
(
length
(
truew
-
df
.
basis_vectors
(
0
))
<
1e-10
);
dlog
<<
LINFO
<<
"accuracy: "
<<
test_ranking_function
(
df
,
samples
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
df
,
samples
)
-
1.0
)
<
1e-14
);
dlog
<<
LINFO
<<
"cv-accuracy: "
<<
cross_validate_ranking_trainer
(
trainer
,
samples
,
2
);
DLIB_TEST
(
std
::
abs
(
cross_validate_ranking_trainer
(
trainer
,
samples
,
2
)
-
0.7777777778
)
<
0.0001
);
trainer
.
set_learns_nonnegative_weights
(
true
);
df
=
trainer
.
train
(
samples
);
truew
=
0
,
0
,
1.0
,
1.0
;
dlog
<<
LINFO
<<
df
.
basis_vectors
(
0
);
DLIB_TEST
(
length
(
truew
-
df
.
basis_vectors
(
0
))
<
1e-10
);
dlog
<<
LINFO
<<
"accuracy: "
<<
test_ranking_function
(
df
,
samples
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
df
,
samples
)
-
1.0
)
<
1e-14
);
samples
.
clear
();
samples
.
push_back
(
p
);
samples
.
push_back
(
p
);
samples
.
push_back
(
p
);
samples
.
push_back
(
p
);
dlog
<<
LINFO
<<
"cv-accuracy: "
<<
cross_validate_ranking_trainer
(
trainer
,
samples
,
4
);
DLIB_TEST
(
std
::
abs
(
cross_validate_ranking_trainer
(
trainer
,
samples
,
4
)
-
1
)
<
1e-12
);
}
// ----------------------------------------------------------------------------------------
void
dotest_sparse_vectors
()
{
print_spinner
();
dlog
<<
LINFO
<<
"in dotest_sparse_vectors()"
;
typedef
std
::
map
<
unsigned
long
,
double
>
sample_type
;
typedef
sparse_linear_kernel
<
sample_type
>
kernel_type
;
svm_rank_trainer
<
kernel_type
>
trainer
;
std
::
vector
<
ranking_pair
<
sample_type
>
>
samples
;
ranking_pair
<
sample_type
>
p
;
sample_type
samp
;
samp
[
3
]
=
1
;
p
.
relevant
.
push_back
(
samp
);
samp
.
clear
();
samp
[
0
]
=
1
;
p
.
nonrelevant
.
push_back
(
samp
);
samp
.
clear
();
samples
.
push_back
(
p
);
samp
[
2
]
=
1
;
p
.
relevant
.
push_back
(
samp
);
samp
.
clear
();
samp
[
0
]
=
1
;
p
.
nonrelevant
.
push_back
(
samp
);
samp
.
clear
();
samp
[
1
]
=
1
;
p
.
nonrelevant
.
push_back
(
samp
);
samp
.
clear
();
samp
[
1
]
=
1
;
p
.
nonrelevant
.
push_back
(
samp
);
samp
.
clear
();
samples
.
push_back
(
p
);
trainer
.
set_c
(
10
);
decision_function
<
kernel_type
>
df
=
trainer
.
train
(
samples
);
dlog
<<
LINFO
<<
"accuracy: "
<<
test_ranking_function
(
df
,
samples
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
df
,
samples
)
-
1.0
)
<
1e-14
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
trainer
.
train
(
samples
[
1
]),
samples
)
-
1.0
)
<
1e-14
);
trainer
.
set_epsilon
(
1e-13
);
df
=
trainer
.
train
(
samples
);
dlog
<<
LINFO
<<
sparse_to_dense
(
df
.
basis_vectors
(
0
));
sample_type
truew
;
truew
[
0
]
=
-
0.5
;
truew
[
1
]
=
-
0.5
;
truew
[
2
]
=
0.5
;
truew
[
3
]
=
0.5
;
DLIB_TEST
(
length
(
subtract
(
truew
,
df
.
basis_vectors
(
0
)))
<
1e-10
);
dlog
<<
LINFO
<<
"accuracy: "
<<
test_ranking_function
(
df
,
samples
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
df
,
samples
)
-
1.0
)
<
1e-14
);
dlog
<<
LINFO
<<
"cv-accuracy: "
<<
cross_validate_ranking_trainer
(
trainer
,
samples
,
2
);
DLIB_TEST
(
std
::
abs
(
cross_validate_ranking_trainer
(
trainer
,
samples
,
2
)
-
0.7777777778
)
<
0.0001
);
trainer
.
set_learns_nonnegative_weights
(
true
);
df
=
trainer
.
train
(
samples
);
truew
[
0
]
=
0.0
;
truew
[
1
]
=
0.0
;
truew
[
2
]
=
1.0
;
truew
[
3
]
=
1.0
;
dlog
<<
LINFO
<<
sparse_to_dense
(
df
.
basis_vectors
(
0
));
DLIB_TEST
(
length
(
subtract
(
truew
,
df
.
basis_vectors
(
0
)))
<
1e-10
);
dlog
<<
LINFO
<<
"accuracy: "
<<
test_ranking_function
(
df
,
samples
);
DLIB_TEST
(
std
::
abs
(
test_ranking_function
(
df
,
samples
)
-
1.0
)
<
1e-14
);
samples
.
clear
();
samples
.
push_back
(
p
);
samples
.
push_back
(
p
);
samples
.
push_back
(
p
);
samples
.
push_back
(
p
);
dlog
<<
LINFO
<<
"cv-accuracy: "
<<
cross_validate_ranking_trainer
(
trainer
,
samples
,
4
);
DLIB_TEST
(
std
::
abs
(
cross_validate_ranking_trainer
(
trainer
,
samples
,
4
)
-
1
)
<
1e-12
);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class
test_ranking_tools
:
public
tester
{
public
:
test_ranking_tools
(
)
:
tester
(
"test_ranking"
,
"Runs tests on the ranking tools."
)
{}
void
perform_test
(
)
{
test_count_ranking_inversions
();
dotest1
();
dotest_sparse_vectors
();
}
}
a
;
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment