Commit cd319ec5 authored by Davis King's avatar Davis King

updated docs

parent 0cdbbe85
...@@ -90,6 +90,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09 ...@@ -90,6 +90,7 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<item>krr_trainer</item> <item>krr_trainer</item>
<item>rr_trainer</item> <item>rr_trainer</item>
<item>svr_trainer</item> <item>svr_trainer</item>
<item>svr_linear_trainer</item>
<item>rvm_regression_trainer</item> <item>rvm_regression_trainer</item>
<item>rbf_network_trainer</item> <item>rbf_network_trainer</item>
</section> </section>
...@@ -1081,7 +1082,11 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09 ...@@ -1081,7 +1082,11 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
<description> <description>
<p> <p>
This object implements a trainer for performing epsilon-insensitive support This object implements a trainer for performing epsilon-insensitive support
vector regression. It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm. vector regression. It is implemented using the <a href="optimization.html#solve_qp3_using_smo">SMO</a> algorithm,
allowing the use of non-linear kernels.
If you are interested in performing support vector regression with a linear kernel and you
have a lot of training data then you should use the <a href="#svr_linear_trainer">svr_linear_trainer</a>
which is highly optimized for this case.
</p> </p>
The implementation of the eps-SVR training algorithm used by this object is based The implementation of the eps-SVR training algorithm used by this object is based
on the following paper: on the following paper:
...@@ -1097,6 +1102,21 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09 ...@@ -1097,6 +1102,21 @@ Davis E. King. <a href="http://jmlr.csail.mit.edu/papers/volume10/king09a/king09
</component> </component>
<!-- ************************************************************************* -->
<component>
<name>svr_linear_trainer</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/svr_linear_trainer_abstract.h</spec_file>
<description>
This object implements a trainer for performing epsilon-insensitive support
vector regression. It uses the <a href="optimization.html#oca">oca</a>
optimizer so it is very efficient at solving this problem when
linear kernels are used, making it suitable for use with large
datasets.
</description>
</component>
<!-- ************************************************************************* --> <!-- ************************************************************************* -->
<component> <component>
......
...@@ -316,6 +316,7 @@ ...@@ -316,6 +316,7 @@
<term file="ml.html" name="krr_trainer" include="dlib/svm.h"/> <term file="ml.html" name="krr_trainer" include="dlib/svm.h"/>
<term file="ml.html" name="rr_trainer" include="dlib/svm.h"/> <term file="ml.html" name="rr_trainer" include="dlib/svm.h"/>
<term file="ml.html" name="svr_trainer" include="dlib/svm.h"/> <term file="ml.html" name="svr_trainer" include="dlib/svm.h"/>
<term file="ml.html" name="svr_linear_trainer" include="dlib/svm.h"/>
<term file="ml.html" name="rvm_regression_trainer" include="dlib/svm.h"/> <term file="ml.html" name="rvm_regression_trainer" include="dlib/svm.h"/>
<term file="ml.html" name="rbf_network_trainer" include="dlib/svm.h"/> <term file="ml.html" name="rbf_network_trainer" include="dlib/svm.h"/>
<term file="ml.html" name="reduced" include="dlib/svm.h"/> <term file="ml.html" name="reduced" include="dlib/svm.h"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment