Commit d102f69a authored by Davis King's avatar Davis King

Added average_precision()

parent 8b5b6fb0
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#include "statistics/image_feature_sampling.h" #include "statistics/image_feature_sampling.h"
#include "statistics/sammon.h" #include "statistics/sammon.h"
#include "statistics/cca.h" #include "statistics/cca.h"
#include "statistics/average_precision.h"
#endif // DLIB_STATISTICs_H_ #endif // DLIB_STATISTICs_H_
......
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_AVERAGE_PREcISION_H__
#define DLIB_AVERAGE_PREcISION_H__
#include "average_precision_abstract.h"
#include <vector>
namespace dlib
{
inline double average_precision (
const std::vector<bool>& items,
unsigned long missing_relevant_items = 0
)
{
double precision_sum = 0;
double relevant_count = 0;
for (unsigned long i = 0; i < items.size(); ++i)
{
if (items[i])
{
++relevant_count;
precision_sum += relevant_count / (i+1);
}
}
relevant_count += missing_relevant_items;
if (relevant_count != 0)
return precision_sum/relevant_count;
else
return 1;
}
}
#endif // DLIB_AVERAGE_PREcISION_H__
// Copyright (C) 2013 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_AVERAGE_PREcISION_ABSTRACT_H__
#ifdef DLIB_AVERAGE_PREcISION_ABSTRACT_H__
#include <vector>
namespace dlib
{
double average_precision (
const std::vector<bool>& items,
unsigned long missing_relevant_items = 0
);
/*!
ensures
- Interprets items as a list of relevant and non-relevant items in a response
from an information retrieval system. In particular, items with a true value
are relevant and false items are non-relevant. This function then returns
the average precision of the ranking of the given items. For, example, the
ranking [true, true, true, true, false] would have an average precision of 1.
On the other hand, the ranking of [true false false true] would have an
average precision of 0.75 (because the first true has a precision of 1 and
the second true has a precision of 0.5, giving an average of 0.75).
- As a special case, if item contains no true elements then the average
precision is considered to be 1.
- This function will add in missing_relevant_items number of items with a
precision of zero into the average value returned. For example, the average
precision of the ranking [true, true] if there are 2 missing relevant items
is 0.5.
!*/
}
#endif // DLIB_AVERAGE_PREcISION_H__
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment