Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in
Toggle navigation
D
dlib
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
钟尚武
dlib
Commits
d1b579f0
Commit
d1b579f0
authored
Jul 30, 2012
by
Davis King
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added try/catch block to main().
parent
8c8c5bf3
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
82 additions
and
74 deletions
+82
-74
graph_labeling_ex.cpp
examples/graph_labeling_ex.cpp
+82
-74
No files found.
examples/graph_labeling_ex.cpp
View file @
d1b579f0
...
...
@@ -170,79 +170,87 @@ void make_training_examples(
int
main
()
{
// Get the training samples we defined above.
dlib
::
array
<
graph_type
>
samples
;
std
::
vector
<
std
::
vector
<
bool
>
>
labels
;
make_training_examples
(
samples
,
labels
);
// Create a structural SVM trainer for graph labeling problems. The vector_type
// needs to be set to a type capable of holding node or edge vectors.
typedef
matrix
<
double
,
0
,
1
>
vector_type
;
structural_graph_labeling_trainer
<
vector_type
>
trainer
;
// This is the usual SVM C parameter. Larger values make the trainer try
// harder to fit the training data but might result in overfitting. You
// should set this value to whatever gives the best cross-validation results.
trainer
.
set_c
(
10
);
// Do 3-fold cross-validation and print the results. In this case it will
// indicate that all nodes were correctly classified.
cout
<<
"3-fold cross-validation: "
<<
cross_validate_graph_labeling_trainer
(
trainer
,
samples
,
labels
,
3
)
<<
endl
;
// Since the trainer is working well. Lets have it make a graph_labeler
// based on the training data.
graph_labeler
<
vector_type
>
labeler
=
trainer
.
train
(
samples
,
labels
);
/*
Lets try the graph_labeler on a new test graph. In particular, lets
use one with 5 nodes as shown below:
(0 F)-----(1 T)
| |
| |
| |
(3 T)-----(2 T)------(4 T)
I have annotated each node with either T or F to indicate the correct
output (true or false).
*/
graph_type
g
;
g
.
set_number_of_nodes
(
5
);
g
.
node
(
0
).
data
=
1
,
0
;
// Node data indicates a false node.
g
.
node
(
1
).
data
=
0
,
1
;
// Node data indicates a true node.
g
.
node
(
2
).
data
=
0
,
0
;
// Node data is ambiguous.
g
.
node
(
3
).
data
=
0
,
0
;
// Node data is ambiguous.
g
.
node
(
4
).
data
=
0.1
,
0
;
// Node data slightly indicates a false node.
g
.
add_edge
(
0
,
1
);
g
.
add_edge
(
1
,
2
);
g
.
add_edge
(
2
,
3
);
g
.
add_edge
(
3
,
0
);
g
.
add_edge
(
2
,
4
);
// Set the edges up so nodes 1, 2, 3, and 4 are all strongly connected.
edge
(
g
,
0
,
1
)
=
0
;
edge
(
g
,
1
,
2
)
=
1
;
edge
(
g
,
2
,
3
)
=
1
;
edge
(
g
,
3
,
0
)
=
0
;
edge
(
g
,
2
,
4
)
=
1
;
// The output of this shows all the nodes are correctly labeled.
cout
<<
"Predicted labels: "
<<
endl
;
std
::
vector
<
bool
>
temp
=
labeler
(
g
);
for
(
unsigned
long
i
=
0
;
i
<
temp
.
size
();
++
i
)
cout
<<
" "
<<
i
<<
": "
<<
temp
[
i
]
<<
endl
;
// Breaking the strong labeling consistency link between node 1 and 2 causes
// nodes 2, 3, and 4 to flip to false. This is because of their connection
// to node 4 which has a small preference for false.
edge
(
g
,
1
,
2
)
=
0
;
cout
<<
"Predicted labels: "
<<
endl
;
temp
=
labeler
(
g
);
for
(
unsigned
long
i
=
0
;
i
<
temp
.
size
();
++
i
)
cout
<<
" "
<<
i
<<
": "
<<
temp
[
i
]
<<
endl
;
try
{
// Get the training samples we defined above.
dlib
::
array
<
graph_type
>
samples
;
std
::
vector
<
std
::
vector
<
bool
>
>
labels
;
make_training_examples
(
samples
,
labels
);
// Create a structural SVM trainer for graph labeling problems. The vector_type
// needs to be set to a type capable of holding node or edge vectors.
typedef
matrix
<
double
,
0
,
1
>
vector_type
;
structural_graph_labeling_trainer
<
vector_type
>
trainer
;
// This is the usual SVM C parameter. Larger values make the trainer try
// harder to fit the training data but might result in overfitting. You
// should set this value to whatever gives the best cross-validation results.
trainer
.
set_c
(
10
);
// Do 3-fold cross-validation and print the results. In this case it will
// indicate that all nodes were correctly classified.
cout
<<
"3-fold cross-validation: "
<<
cross_validate_graph_labeling_trainer
(
trainer
,
samples
,
labels
,
3
)
<<
endl
;
// Since the trainer is working well. Lets have it make a graph_labeler
// based on the training data.
graph_labeler
<
vector_type
>
labeler
=
trainer
.
train
(
samples
,
labels
);
/*
Lets try the graph_labeler on a new test graph. In particular, lets
use one with 5 nodes as shown below:
(0 F)-----(1 T)
| |
| |
| |
(3 T)-----(2 T)------(4 T)
I have annotated each node with either T or F to indicate the correct
output (true or false).
*/
graph_type
g
;
g
.
set_number_of_nodes
(
5
);
g
.
node
(
0
).
data
=
1
,
0
;
// Node data indicates a false node.
g
.
node
(
1
).
data
=
0
,
1
;
// Node data indicates a true node.
g
.
node
(
2
).
data
=
0
,
0
;
// Node data is ambiguous.
g
.
node
(
3
).
data
=
0
,
0
;
// Node data is ambiguous.
g
.
node
(
4
).
data
=
0.1
,
0
;
// Node data slightly indicates a false node.
g
.
add_edge
(
0
,
1
);
g
.
add_edge
(
1
,
2
);
g
.
add_edge
(
2
,
3
);
g
.
add_edge
(
3
,
0
);
g
.
add_edge
(
2
,
4
);
// Set the edges up so nodes 1, 2, 3, and 4 are all strongly connected.
edge
(
g
,
0
,
1
)
=
0
;
edge
(
g
,
1
,
2
)
=
1
;
edge
(
g
,
2
,
3
)
=
1
;
edge
(
g
,
3
,
0
)
=
0
;
edge
(
g
,
2
,
4
)
=
1
;
// The output of this shows all the nodes are correctly labeled.
cout
<<
"Predicted labels: "
<<
endl
;
std
::
vector
<
bool
>
temp
=
labeler
(
g
);
for
(
unsigned
long
i
=
0
;
i
<
temp
.
size
();
++
i
)
cout
<<
" "
<<
i
<<
": "
<<
temp
[
i
]
<<
endl
;
// Breaking the strong labeling consistency link between node 1 and 2 causes
// nodes 2, 3, and 4 to flip to false. This is because of their connection
// to node 4 which has a small preference for false.
edge
(
g
,
1
,
2
)
=
0
;
cout
<<
"Predicted labels: "
<<
endl
;
temp
=
labeler
(
g
);
for
(
unsigned
long
i
=
0
;
i
<
temp
.
size
();
++
i
)
cout
<<
" "
<<
i
<<
": "
<<
temp
[
i
]
<<
endl
;
}
catch
(
std
::
exception
&
e
)
{
cout
<<
"Error, an exception was thrown!"
<<
endl
;
cout
<<
e
.
what
()
<<
endl
;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment