Commit d637dfe5 authored by Davis King's avatar Davis King

updated the docs

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%402415
parent c8b780f5
......@@ -28,7 +28,6 @@
<item>crc32</item>
<item>rand</item>
<item>running_stats</item>
<item>pick_initial_centers</item>
<item>mlp</item>
<item nolink="true">
<name>Optimization</name>
......@@ -105,16 +104,28 @@
</sub>
</item>
<item nolink="true">
<name>SVM Utilities</name>
<name>Kernel_Methods</name>
<sub>
<item>radial_basis_kernel</item>
<item>polynomial_kernel</item>
<item>linear_kernel</item>
<item>decision_function</item>
<item>distance_function</item>
<item>probabilistic_decision_function</item>
<item nolink="true">
<name>Kernels</name>
<sub>
<item>radial_basis_kernel</item>
<item>polynomial_kernel</item>
<item>linear_kernel</item>
</sub>
</item>
<item nolink="true">
<name>Function_Objects</name>
<sub>
<item>decision_function</item>
<item>distance_function</item>
<item>probabilistic_decision_function</item>
</sub>
</item>
<item>pick_initial_centers</item>
<item>krls</item>
<item>kcentroid</item>
<item>linearly_independent_subset_finder</item>
<item>kkmeans</item>
<item>svm_nu_trainer</item>
<item>rbf_network_trainer</item>
......@@ -856,6 +867,39 @@
<!-- ************************************************************************* -->
<component>
<name>linearly_independent_subset_finder</name>
<file>dlib/svm.h</file>
<spec_file link="true">dlib/svm/linearly_independent_subset_finder_abstract.h</spec_file>
<description>
<p>
This is an implementation of an online algorithm for recursively finding a
set of linearly independent vectors in a kernel induced feature space. To
use it you decide how large you would like the set to be and then you feed it
sample points.
</p>
<p>
Each time you present it with a new sample point it either
keeps the current set of independent points unchanged, or if the new point
is "more linearly independent" than one of the points it already has,
it replaces the weakly linearly independent point with the new one.
</p>
<p>
This object uses the Approximately Linearly Dependent metric described in the paper
The Kernel Recursive Least Squares Algorithm by Yaakov Engel to decide which
points are more linearly independent than others.
</p>
</description>
</component>
<!-- ************************************************************************* -->
<component>
<name>kcentroid</name>
......
......@@ -402,6 +402,7 @@
<term link="algorithms.html#point" name="point"/>
<term link="algorithms.html#krls" name="krls"/>
<term link="algorithms.html#kcentroid" name="kcentroid"/>
<term link="algorithms.html#linearly_independent_subset_finder" name="linearly_independent_subset_finder"/>
<term link="algorithms.html#running_stats" name="running_stats"/>
<term link="algorithms.html#kkmeans" name="kkmeans"/>
<term link="algorithms.html#pick_initial_centers" name="pick_initial_centers"/>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment