Commit d780f8bc authored by Davis King's avatar Davis King

suppress compiler warnings

parent f3148098
...@@ -55,9 +55,9 @@ namespace dlib ...@@ -55,9 +55,9 @@ namespace dlib
weight_decay_multiplier(1), weight_decay_multiplier(1),
bias_learning_rate_multiplier(1), bias_learning_rate_multiplier(1),
bias_weight_decay_multiplier(0), bias_weight_decay_multiplier(0),
num_filters_(o.num_outputs),
padding_y_(_padding_y), padding_y_(_padding_y),
padding_x_(_padding_x), padding_x_(_padding_x)
num_filters_(o.num_outputs)
{ {
DLIB_CASSERT(num_filters_ > 0); DLIB_CASSERT(num_filters_ > 0);
} }
......
...@@ -647,7 +647,7 @@ namespace dlib ...@@ -647,7 +647,7 @@ namespace dlib
) const ) const
{ {
const tensor& output_tensor = sub.get_output(); const tensor& output_tensor = sub.get_output();
DLIB_CASSERT(output_tensor.k() == options.detector_windows.size()); DLIB_CASSERT(output_tensor.k() == (long)options.detector_windows.size());
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples()); DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
DLIB_CASSERT(sub.sample_expansion_factor() == 1, sub.sample_expansion_factor()); DLIB_CASSERT(sub.sample_expansion_factor() == 1, sub.sample_expansion_factor());
...@@ -688,7 +688,7 @@ namespace dlib ...@@ -688,7 +688,7 @@ namespace dlib
DLIB_CASSERT(sub.sample_expansion_factor() == 1); DLIB_CASSERT(sub.sample_expansion_factor() == 1);
DLIB_CASSERT(input_tensor.num_samples() == grad.num_samples()); DLIB_CASSERT(input_tensor.num_samples() == grad.num_samples());
DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples()); DLIB_CASSERT(input_tensor.num_samples() == output_tensor.num_samples());
DLIB_CASSERT(output_tensor.k() == options.detector_windows.size()); DLIB_CASSERT(output_tensor.k() == (long)options.detector_windows.size());
...@@ -877,7 +877,7 @@ namespace dlib ...@@ -877,7 +877,7 @@ namespace dlib
) const ) const
{ {
DLIB_CASSERT(net.sample_expansion_factor() == 1,net.sample_expansion_factor()); DLIB_CASSERT(net.sample_expansion_factor() == 1,net.sample_expansion_factor());
DLIB_CASSERT(output_tensor.k() == options.detector_windows.size()); DLIB_CASSERT(output_tensor.k() == (long)options.detector_windows.size());
const float* out_data = output_tensor.host() + output_tensor.k()*output_tensor.nr()*output_tensor.nc()*i; const float* out_data = output_tensor.host() + output_tensor.k()*output_tensor.nr()*output_tensor.nc()*i;
// scan the final layer and output the positive scoring locations // scan the final layer and output the positive scoring locations
dets_accum.clear(); dets_accum.clear();
...@@ -910,7 +910,6 @@ namespace dlib ...@@ -910,7 +910,6 @@ namespace dlib
// Figure out which detection window in options.detector_windows has the most // Figure out which detection window in options.detector_windows has the most
// similar aspect ratio to rect. // similar aspect ratio to rect.
const double aspect_ratio = rect.width()/(double)rect.height();
size_t best_i = 0; size_t best_i = 0;
double best_ratio_diff = -std::numeric_limits<double>::infinity(); double best_ratio_diff = -std::numeric_limits<double>::infinity();
for (size_t i = 0; i < options.detector_windows.size(); ++i) for (size_t i = 0; i < options.detector_windows.size(); ++i)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment